Lista de exercícios do ensino médio para impressão
(PUC - 1970) Sendo $\;A(3,1)\,$, $\;B(4, -4)\;$ e $\;C(-2,2)\,$ vértices de um triângulo, então este triângulo é:
a)
triângulo retângulo e não isósceles
b)
triângulo retângulo e isósceles
c)
triângulo equilátero
d)
triângulo isósceles não retângulo
e)
nenhuma das respostas anteriores

 



resposta: Alternativa D
×
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p .
Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
e)
nenhuma das respostas anteriores.

 



resposta: alternativa C
×
(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:
a)
6 unidades.
b)
5 unidades.
c)
4 unidades.
d)
3 unidades.
e)
2 unidades.

 



resposta: Alternativa E
×
(PUC-RS - 1980) Se "$\;\ell\;$" é a medida da aresta de um tetraedro regular, então sua altura mede:
a)
$\;\dfrac{\ell\sqrt{2}}{3}$
c)
$\;\dfrac{\ell\sqrt{3}}{4}$
b)
$\;\dfrac{\ell\sqrt{3}}{2}$
d)
$\;\dfrac{\ell\sqrt{6}}{3}$
e)
$\;\dfrac{\ell\sqrt{6}}{9}$

 



resposta:
Resolução:

altura do tetraedro regular:

altura do tetraedro regular
Na figura, o segmento $\;\overline{MC}\;$ ou apótema "g" na face inferior do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$:
$\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$
O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo.
A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então:
$\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$
$\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$
Assim temos:
$\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$
Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
resposta:
Alternativa D
×
(UFMG - 1992) Observe a figura.

triângulo equilátero com bissetrizes

Nessa figura, $\overline{AB} \cong \overline{AC}$, $\overline{BD}$ bissetriz de $A\hat{B}C$, $\overline{CE}$ bissetriz de $B\hat{C}D$ e a medida do ângulo $A\hat{C}F$ é $140^0$. A medida do ângulo $D\hat{E}C$, em graus, é:
a)
20
b)
30
c)
40
d)
50
e)
60

 



resposta: Alternativa C
×
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
gangorra

 



resposta:
gangorra da vunesp

Considerações:

A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.

A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução:
O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais.
$\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
$\;\dfrac{1,2\, +\, 1,8}{1,8}\,=\,\dfrac{H}{\frac{\sqrt{3}}{2}}\;\Rightarrow\;$ $\;H\,=\,\dfrac{\sqrt{3}}{2}\centerdot\dfrac{30}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{\sqrt{3}}{1}\centerdot\dfrac{15}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{5\sqrt{3}}{6}\;\Rightarrow\;$ corresponde à
Alternativa D

×
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
Dê a expressão da altura de um triângulo equilátero em função da medida do lado do triângulo.

 



resposta: triângulo equilátero de lado l

Resolução:
No triângulo da figura:

$\;\ell^2 = h^2 + (\frac{\ell}{2})^2 \;\;\Longleftrightarrow \;\; h^2 = \ell ^2 - \frac{\ell ^2}{4} \; = \; \frac{3 \ell^2}{4}\;\Longrightarrow\;$

ou $\;\; h = \frac{\ell \sqrt{3}}{2}$


Resposta: $\;\;h = \frac{\ell \sqrt{3}}{2}$
×
O apótema da base de um prisma triangular regular mede $\;5\;cm\;$ e a área lateral mede $\;100\;cm^2\;$. Calcular a altura do sólido.

 



resposta:
ilustração prisma triangular reto e apótema
Resolução:
1. a base é um triângulo equilátero, então:
$ \; h = \; $ altura do triângulo da base
$\;a =\; $ apótema
$\; h = 3a\;\;\;\;$ e $\;\;\;h =\frac{\ell \sqrt{3}}{2}\;$ $\;\Rightarrow \;\;3a = \frac{\ell \sqrt{3}}{2} \;\;\Rightarrow \;$ $\; 3 \centerdot 5 \; = \; \frac{\ell \sqrt{3}}{2}\;\; \Longleftrightarrow \;$ $\;\ell \; = \; \frac{30}{\sqrt{3}}\;\; \Longleftrightarrow \;$ $\; \ell \;=\;10\sqrt{3}\;cm$
2. Área lateral = $\;A_{lateral} \;=\; 3 \centerdot A_{face} \;\; \Rightarrow \;\; A_{face} \;=\; \frac{100}{3} cm^2$
Sendo $\;A_{face} \;=\; \ell \centerdot H \;$ temos que
$\; \frac{100}{3}\;=\;10 \centerdot \sqrt{3} \centerdot H \;\; \Rightarrow \;\; H \; = \frac{10}{3 \sqrt{3}}$
Resposta:
$\;H\;=\;\frac{10\sqrt{3}}{9} \; cm$
×
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².

 



resposta:
prisma triangular regular

Considerações:

Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo).

$\phantom{XX}\,\left\{\begin{array}{rcr} a_{\large b} \longrightarrow & \\ h\;\longrightarrow\; & \\ A_{\mbox{base}} \longrightarrow & \\ \end{array} \right.\,$
aresta da base
altura do prisma$\; = a_{\large b}\,$
área da base, o triângulo equilátero
Resolução:
1. Sabemos que a área lateral é igual a $\;10 m^2\;$
A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura).
$\;A_{\mbox{lateral}} \;=\; 3 \centerdot a_{\large b} \centerdot h \;\;\Longrightarrow \;\; A_{\mbox{lateral}} \;=\; 3 (a_{\large b}) ^2\;\;$ então $\;\;\left(a_{\large b}\right)^2 \;=\; \dfrac{10}{3}$
2. Área da base:
(área do triângulo equilátero de lado $\;{\large \ell}\;$ em função da medida do lado do triângulo vale $\;\dfrac{\ell^2 \sqrt{3}}{4}\;$)
Então $\;A_{\mbox{base}} \;=\;\dfrac{\left(a_{\large b}\right)^2\sqrt{3}}{4}\;\;\Longrightarrow \;\;A_{\mbox{base}}\;=\dfrac{10}{3}\centerdot\dfrac{\sqrt{3}}{4}\;m^2\;\Longrightarrow$ $\; \;\;A_{\mbox{base}}\;=\dfrac{10\sqrt{3}}{12}\;m^2$
3. Área total:
$A_{\mbox{total}} \;=\;A_{\mbox{lateral}}\,+\,2\centerdot A_{\mbox{base}} \;\;\Longrightarrow \;\;A_{\mbox{total}}\;=\; 10\,+\,2 \centerdot \dfrac{10\sqrt{3}}{12}$
$\;\boxed{\;A_{total}\; = \;10(1 + \dfrac{\sqrt{3}}{6})\;m^2\;}\;$

×
A altura de um triângulo equilátero de lado 4 cm é:
a)$\;4 \;cm\;$ b)$\;2 \;cm\;$ c)$\;4\sqrt{3} \;cm\;$
d)$\;2\sqrt{3} \;cm\;$e) $\;1\; cm\;$

 



resposta: D
×
O lado de um triângulo equilátero é igual à altura de um segundo. Qual a razão de semelhança na ordem dada?

 



resposta: $\;r\;=\;\frac{\sqrt{3}}{2}\;$
×
Determinar a altura de um triângulo equilátero cujo lado mede 1 cm.

 



resposta: $\;h\;=\;\frac{\sqrt{3}}{2}\;cm$
×
Na figura, $\;ABCD\;$ é um quadrado de lado $\;1\;cm\;$ e $\;DBE\;$ é um triângulo equilátero. Determinar a medida de $\;\overline{CE}\;$.
imagem quadrado e triângulo


 



resposta: $\;\overline{CE}\;=\;\sqrt{5\,+\,2\sqrt{3}}\;\,cm$
×
(FEI) O triângulo ABC é equilátero; D e E são os pontos médios de BH e CH. Comparar as áreas $S_1$ do retângulo DHEM com $S_2$ do retângulo DEGF.
a)
são iguais
b)
$S_1$ < $S_2$
c)
$S_1$ > $S_2$
d)
dependem da medida do lado do triângulo e assim pode ser qualquer das anteriores.
e)
$S_1 + S_2 =\dfrac{a^2\sqrt{3}}{16}$
triângulo equilátero ABC

 



resposta: (A)
×
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
a)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{1}{2}} \right) \,$
b)
$\,\left({\large \frac{1}{2}; \frac{\sqrt{3}}{2}} \right) \,$
c)
$\,\left({\large \frac{1}{2}; \frac{1}{2}} \right) \,$
d)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{\sqrt{3}}{2}} \right) \,$
e)
nenhuma das alternativas
anteriores


 



resposta: alternativa B
×
(MACKENZIE - 1977) Se a soma das áreas dos três círculos de mesmo raio é $\,3\pi\,$, a área do triângulo equilátero ABC é:
a)
$\,7\sqrt{3}\,+\,12\,$
b)
$\,7\,+\,4\sqrt{3}\,$
c)
$\,19\sqrt{3}\,$
d)
$\,11\sqrt{3}\,$
e)
não sei
triângulo equilátero com 3 circunferências tangentes ao lado da base

 



resposta: Alternativa A
×
(FESP - 1991) Um triângulo equilátero ABC está inscrito numa circunferência de raio igual a 6 cm. O triângulo é interceptado por um diâmetro de circunferência, formando um trapézio, conforme a figura abaixo. Podemos afirmar então que a razão entre a área do triângulo ABC e a do trapézio é igual a:
a)
$\,\dfrac{5}{4}\,$
b)
$\,\dfrac{9}{5}\,$
c)
$\,\dfrac{9}{8}\,$
d)
$\,\dfrac{9}{4}\,$
e)
$\,\dfrac{8}{5}\,$
círculo com triângulo equilátero inscrito e diâmetro MN

 



resposta: Alternativa B
×
O raio da base de um cone circular reto é R . Sabendo-se que sua secção meridiana é um triângulo equilátero, determine a área desta secção.

 



resposta: $A_{\large SM}\,=\,R^{\large 2}\,\sqrt{3}\,$
×
(MAUÁ) Seja um cone circular reto, tal que uma secção pelo seu eixo resulte num triângulo equilátero de lado 2a . Calcule a área total da superfície do cone.

 



resposta: Atotal = 3π a²
×
(VUNESP - 1982) Um observador O encontra-se no vértice P de uma sala, cuja planta é um triângulo equilátero de lado igual a 6 m .
Num dos cantos da sala existe um espelho vertical, de 3,0 m de largura, ligando os pontos médios de PQ e QR .
Nestas condições, olhando por meio do espelho, o observador vê (no plano horizontal que passa pelos olhos):
a)
metade de cada parede da sala.
b)
um terço de PR e metade de QR.
c)
um terço de PR e um terço de PQ.
d)
metade de QR e metade de PR.
e)
PR inteira e metade de QR.
sala triangular com espelho

 



resposta: (D)
×
Determinar a área total de um octaedro regular inscrito numa esfera de volume igual a 36 ℼ m³ .

 



resposta:
octaedro regular inscrito na esfera
Vesfera = $\,\frac{\,4\,}{\,3\,}\pi\,R^3\;\Rightarrow$

$\,36\,\pi\;=\;\frac{\,4\,}{\,3\,}\pi\,R^3\;\Rightarrow\;R\,=\,3\,m\,$

$\,a^2\,=\,R^2\,+\,R^2\;\Rightarrow$ $\,a^2\,=\,9\,+\,9\;\Rightarrow$ $\,a\,=\,3\sqrt{\,2\,}\;m$

Aface = Atriângulo equilátero = $\,\dfrac{\ell^2\,\sqrt{3\,}}{4}\,=$ $\,\dfrac{\,(3\sqrt{2})^2\,\centerdot\,\sqrt{\,3\,}}{4}\,=\,\dfrac{\,9\,\sqrt{\,3\,}\,}{2}\,m^2$

$\,A_{\text TOTAL}\;=\;8\,\centerdot\,A_{\text face}\,=$ $\,\dfrac{\,8\,\centerdot\,9\,\sqrt{\,3\,}\,}{2}\, =\,36\sqrt{\,3\,}\;m^2$

ATOTAL = $\,36\sqrt{\,3\,}\;m^2$
×
(USP) A altura de um tetraedro regular de aresta $\phantom{X}\ell\phantom{X}$ vale:
a)
$\,\dfrac{\,\ell\,\sqrt{\,6\,}\,}{\,3\,}\,$
b)
$\,\dfrac{\,\ell\,\sqrt{\,3\,}\,}{\,2\,}\,$
c)
$\,\ell\,\sqrt{\,3\,}\phantom{X}$
d)
$\,\ell\,\phantom{\dfrac{X}{X}}$
e)
$\,\ell\,\sqrt{\,2\,}\,$

 



resposta:

altura do tetraedro regular:

altura do tetraedro regular
Na figura, o apótema "g" do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$:
$\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$
O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo.
A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então:
$\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$
$\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$
Assim temos:
$\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$
Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
resposta:
alternativa A
×
Veja exercÍcio sobre:
geometria analítica
ponto
reta
ponto e reta
coordenadas cartesianas