1. | o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente). |
Então $\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$. $tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$ $ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$ | |
2. | o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$. |
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$ |
Geratriz do cone é qualquer segmento de reta lateral com uma extremidade no vértice do cone e outra extremidade no perímetro da base do cone.
Como o cone é circular reto, a figura hachurada é um triângulo retângulo onde os catetos são, respectivamente, a altura do cone (8 cm) e o raio da base do cone (r).
Considerando-se que a tangente de 60° é igual a $\,\sqrt{\,3\;}\,$ temos:
$\,\operatorname{tg}60^o\,=\,\dfrac{{\text cateto}\;{\text oposto}}{{\text cateto}\;{\text adjacente}}\,=\,\dfrac{\,h\,}{\,r\,}\,\Rightarrow$
$\,\dfrac{\;h\;}{\;r\;}\,=\,\sqrt{\,3\;}\;\Rightarrow\;r\,=\,\dfrac{\;h\;}{\;\sqrt{\,3\;}\;}\,=$ $\,\dfrac{h\sqrt{3}}{3}\,$