Lista de exercícios do ensino médio para impressão
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.

 



resposta:
Resolução:
$\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I)
$\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II)
Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III)
figura do triângulo retângulo clássico
Substituindo (I) e (II) em (III) temos então:
$\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$
$a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$
$\Rightarrow\;$
$a = 15$
$a = 3$ (inadequado porque $\;b\;\neq\;0\;$)

Substituindo $\;a\;=\;15\;$ em (I) e (II)
$\;b\;=\;12\;$
$\;c\;=\;9\;$
Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$

×
Determinar a altura relativa à hipotenusa de um triângulo retângulo cujos catetos valem $\;3\;cm\;\;\;\;$ e $\;\;\;\;4\;cm$.

 



resposta:
Resolução
triângulo retângulo resposta
$\;a^2\;=\;b^2\;+\;c^2\; \Rightarrow \; a^2\;=\;3^2\;+\;4^2\;\Rightarrow\;$
$\;\Rightarrow\;\;a\;=\;5\;$
$\;a\centerdot\;h\;=\;b\centerdot\;c\;$ (relação métrica)$\;\Rightarrow $
$ \Rightarrow \; 5\centerdot h\;=\;3\;\centerdot 4 \; \Rightarrow$
$\;\Rightarrow\;h\;=\;\frac{12}{5}\;cm\; = \; 2,4\;cm$
Resposta: $\,h\,=\,2,4\;cm\,$.
×
Na figura abaixo, o valor de x é:
a)
5
b)
6
c)
7
d)
8
e)
9
triângulo retângulo de cateto 8 e hipotenusa 10

 



resposta: (B)
×
Conforme a figura abaixo, a medida do lado maior $\;x\;$ do retângulo é:
sobre teorema de Pitágoras
a)
5 m
b)
$\sqrt{47}\;$ m
c)
47 m
d)
25 m
e)
12 m

 



resposta: alternativa A
×
Na figura são dadas as medidas de dois lados de um triângulo retângulo. O terceiro lado mede:
a)
3
b)
$\sqrt{41}$
c)
$\sqrt{37}$
d)
4
e)
$\sqrt{34}$
triângulo retângulo de catetos 3 e 5

 



resposta: (E)
×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é:
a) um triângulo retângulo
b) um triângulo acutângulo
c) um triângulo obtusângulo
d) um triângulo equiângulo
e) nenhuma das anteriores

 



resposta: C
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
(ITA - 2012) As retas $\;r_1\;$ e $\;r_2\;$ são concorrentes no ponto $\;P\;$, exterior a um círculo $\;\omega\;$. A reta $\;r_1\;$ tangencia $\;\omega\;$ no ponto $\;A\;$ e a reta $\;r_2\;$ intercepta $\;\omega\;$ nos ponto $\;B\;$ e $\;C\;$ diametralmente opostos. A medida do arco $\;\stackrel \frown{AC}\;$ é $\;60^o\;$ e $\;\overline{PA}\;$ mede $\;\sqrt{2}\;$ cm. Determine a área do setor menor de $\;\omega\;$ definido pelo arco $\stackrel \frown{AB}\;$.

 



resposta:
ITA 2012 EXERCISE 32

Resolução: De acordo com a figura traçada a partir do enunciado:
1. o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente).
Então
$\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$.
$tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$
$ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$
2. o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$.
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$

Resposta:$S = \dfrac{2\pi}{9}\; cm^2$
×
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por:
a)
$\, \dfrac{2}{3} \pi R^{\large3} \left(\dfrac{m\,-\,1}{m}\right)^{\large 2}\phantom{XXXXXXXX}$
b)
$\, \dfrac{2}{3} \pi R^{\large3} \left(1\,-\,\left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\right)\,$
c)
$\, \dfrac{2}{3} \pi R^{\large3} \left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\;\phantom{XXXXXXX}$
d)
$\,\dfrac{2}{3} \pi R^{\large3} \left(1 \,+\,\left( \dfrac{m\,-\,1}{m}\right)^{\large 2}\right)\,$
e)
nenhuma das alternativas anteriores

 



resposta: Alternativa D
×
(GOIÂNIA) Em um triângulo retângulo $\,ABC\,$ os ângulos $\;\hat{B}\text{ e } \hat{C}\;$ são agudos. Se a hipotenusa mede 3 cm. e $\,\operatorname{sen}C\,=\,{\large \frac{\operatorname{sen}B}{2}}\;$, calcule as medidas dos catetos.

 



resposta: $\,\frac{3 \sqrt{5}}{5}\,\text{cm. e }\,\frac{6\sqrt{5}}{5}\,\text{cm.}$

×
(FUVEST - 2015) No triângulo retângulo $\;ABC\;$, ilustrado na figura, a hipotenusa $\,\overline{AC}\,$ mede 12 cm e o cateto $\,\overline{BC}\,$ mede 6 cm. Se $\,M\,$ é o ponto médio de $\,\overline{BC}\,$, então a tangente do ângulo $\,\widehat{MAC}\,$ é igual a:
a)
$\,\dfrac{\sqrt{2}}{7}\,$
b)
$\,\dfrac{\sqrt{3}}{7}\,$
c)
$\,\dfrac{2}{7}\,$
d)
$\,\dfrac{2\sqrt{2}}{7}\,$
e)
$\,\dfrac{2\sqrt{3}}{7}\,$
triângulo retângulo ABC

 



resposta: Alternativa B
×
(FATEC - 1979) Se os catetos de um triângulo retângulo T medem, respectivamente, 12 cm e 5 cm, então a altura de T relativa à hipotenusa é:
a)
$\,\dfrac{12}{5}\,$ cm
b)
$\,\dfrac{5}{13}\,$ cm
c)
$\,\dfrac{12}{13}\,$ cm
d)
$\,\dfrac{25}{13}\,$ cm
e)
$\,\dfrac{60}{13}\,$ cm

 



resposta: Alternativa E
×
(PUC SP - 1980) Num triângulo retângulo cujos catetos medem $\,\sqrt{3}\;$ e $\;\sqrt{4}\,$, a hipotenusa mede:
a)
$\,\sqrt{5}\,$
b)
$\,\sqrt{7}\,$
c)
$\,\sqrt{8}\,$
d)
$\,\sqrt{9}\,$
e)
$\,\sqrt{12}\,$

 



resposta: Alternativa B
×
(UF UBERLÂNDIA - 1980) Num triângulo ABC, o ângulo $\,\hat{A}\,$ é reto. A altura $\,h_A\,$ divide a hipotenusa $\;a\;$ em dois segmentos $\,m\,$ e $\,n\;(m\,> \,n)\,$. Sabendo-se que o cateto $\,b\,$ é o dobro do cateto $\,c\,$, podemos afirmar que $\,\dfrac{m}{n}\,$ é igual a:
a)
4
b)
3
c)
2
d)
7/2
e)
5

 



resposta: Alternativa A
×
Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica conforme a figura. A abertura das taças é de 4 cm de raio interno, com profundidade de $\,8\sqrt{2}\,$cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
a)
4
b)
3
c)
2
d)
1
e)
5
taça de vinho

 



resposta:
taça de vinho
Na figura, a pérola de colar esférica de centro O e raio 1 cm encalhada no fundo da taça com formato de cone — raio da base do cone $\;\overline{AB}\,=\,4\,$cm e altura do cone $\;h \,=\,8\sqrt{2}\,$cm. Foi traçada a altura do cone, o segmento $\;\overline{AC}\;$.
Se a esfera está apoiada sobre a face lateral do cone, então a aresta $\;\overline{BC}\;$ é tangente à esfera no ponto $\;P\;$ e o raio $\;\overline{OP}\;$ é perpendicular a $\;\overline{BC}\;$.
Consideremos o ângulo $\;\alpha\;$ no triângulo $\;ABC\;$ reto em $\;\hat{A}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{AB}}{\mbox{cateto adjacente}\,\overline{AC}}\,=$ $\,\dfrac{4}{8\sqrt{2}}\phantom{X}(I)$
Consideremos o mesmo ângulo $\;\alpha\;$ no triângulo $\;POC\;$ reto em $\;\hat{P}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{OP}}{\mbox{cateto adjacente}\,\overline{PC}}\,=$ $\,\dfrac{\mbox{raio da esfera }\overline{OP}}{\overline{PC}}\,=\,\dfrac{1}{\overline{PC}}\phantom{X}(II)$
De (I) e (II) decorre que:
$\phantom{X}\dfrac{1}{\overline{PC}}\,=\,\dfrac{4}{8\sqrt{2}}\,$ $\;\Rightarrow\;\overline{PC}\,=\,\dfrac{8\sqrt{2}}{4}\;$ $\Rightarrow\;\overline{PC}\,=\,2\sqrt{2}\,$
Recorrendo ao Teorema de Pitágoras no triângulo $\;POC\;$:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\;\overline{PC}\,=\,2\sqrt{2}\;& \\ \mbox{cateto}\;\overline{OP}\,=\,1\longrightarrow & \mbox{(raio da esfera)}\\ \mbox{hipotenusa}\, \overline{OC}\,=\,d\,+\,1 & \\ \end{array} \right.\,$
$\,(d\,+\,1)^2\,=\,1^2\,+\,(2\sqrt{2})^2\;\Rightarrow\;d\,+\,1\,=\,\sqrt{9}\,$ $\Rightarrow\;d\,=\,3\,-\,1\;\Rightarrow\;\boxed{\,d\,=\,2\,}\,$, que corresponde à
Alternativa C
×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
O triângulo retângulo $\,OAB\,$ gira em torno do cateto $\,OA\,$, determinando um sólido no espaço. O volume gerado pela região $\,OAM\,$ é igual ao gerado pela região $\,OMB\,$. Então a razão $\,\dfrac{AM}{AB}\,$ será:
a)
$\,\dfrac{1}{2}\,$
b)
$\,\dfrac{1}{3}\,$
c)
$\,\sqrt{2}\,$
d)
$\,2\sqrt{2}\,$
e)
$\,\dfrac{\sqrt{2}}{2}\,$
triângulo retângulo OAB com segmento OM

 



resposta:
cone de revolução gerado pelo triângulos AOB
Considerações:

Uma região gerada por um triângulo retângulo girando uma volta completa em torno de um de seus catetos é um cone circular reto chamado de cone de revolução.

Observe atentamente a figura ao lado e verifique que:
1. o triângulo retângulo OAB gira em torno do cateto OA gerando o cone circular representado com superfície verde.
2. o triângulo retângulo OAM interno gira em torno do cateto OA gerando o cone circular interno representado na cor cinza.
A reta que contém o segmento OA é chamada eixo de ambos os cones.
Segundo o enunciado:
1. o volume do cone interno cinza gerado pelo triângulo OAM é o mesmo volume que o cone externo gerado pelo triângulo OAB subtraído o volume interno do cone gerado por OAM. Como na figura, o volume do cone externo verde subtraído o cone interno cinza é igual ao volume do cone interno cinza.
2. o examinador deseja a razão $\;\dfrac{\overline{AM}}{\overline{AB}}\,$, que é a razão do cateto inferior de OAM sobre o cateto inferior de OAB: $\;\rightarrow\,\dfrac{\overline{AM}}{\overline{AB}}\;=\;\dfrac{(a)}{(a\,+\,b)}$
Resolução:
Volume gerado pela região OAM é $\,\dfrac{\pi(a)^{\large 2}\centerdot H}{3}\,=\,\dfrac{\pi H(a)^{\large 2}}{3}\;\;$(I)
Volume gerado pela região OMB é :(volume do cone gerado OAB) subtraído (volume gerado por OAM): $\,\dfrac{\pi(\overline{AB})^{\large 2}\centerdot H}{3}\, - \,\dfrac{\pi(\overline{AM})^{\large 2}\centerdot H}{3}\phantom{X}=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (\overline{AB})^{\large 2}\,-\,(\overline{AM})^{\large 2} \right)\;\;=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)\;\;$(II)
Conforme o enunciado, igualando (I) e (II) temos:
$\,\require{cancel} \cancel{\dfrac{\pi H}{3}}(a)^{\large 2}\, = \,\cancel{\dfrac{\pi H}{3}}\left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)$
$\, (a)^{\large 2}\, = \,(a + b)^{\large 2}\,-\,(a)^{\large 2}$
$\, 2(a)^{\large 2}\, = \,(a + b)^{\large 2}\phantom{X}\Rightarrow\phantom{X}$
dividindo os dois lados da igualdade por $\,2(a\,+\,b)^{\large 2}$
$\dfrac{2(a)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,=\,\dfrac{(a\,+\,b)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,$ $\phantom{X}\Rightarrow\phantom{X}\dfrac{\cancel{2}(a)^{\large 2}}{\cancel{2}(a\,+\,b)^{\large 2}}\,=\,\dfrac{\cancel{(a\,+\,b)^{\large 2}}}{2\cancel{(a\,+\,b)^{\large 2}}}\,$ $\phantom{X}\Rightarrow\phantom{X}\left(\dfrac{a}{a + b}\right)^{\large 2}\,=\,\dfrac{1}{2}\,\phantom{X}\Rightarrow\phantom{X}$
$\,\left\{\begin{array}{rcr} \dfrac{a}{a + b}\,=\,+\sqrt{\dfrac{1}{2}} \;\Rightarrow\;\boxed{\,\dfrac{a}{a + b}\,=\,+\dfrac{\sqrt{2}}{2}\,} & \; \\ \cancel{\,\dfrac{a}{a + b}\,=\,-\sqrt{\dfrac{1}{2}}\,}\mbox{ (valor negativo)} \phantom{XX}\, & \\ \end{array} \right.\,$
Como trata-se de medida de comprimento e/ou distância, valores negativos não são considerados
A razão $\,\dfrac{\overline{AM}}{\overline{AB}}\,$ é igual a $\,\dfrac{\sqrt{2}}{2}\,$ que corresponde à
Alternativa E
×
A geratriz de um cone circular reto mede 10 cm e a altura 8 cm . Determine o raio da base.

 



resposta:
cone indicados geratriz, altura e raio da base

Geratriz do cone é qualquer segmento de reta lateral com uma extremidade no vértice do cone e outra extremidade no perímetro da base do cone.

Como o cone é circular reto, a figura hachurada é um triângulo retângulo onde os catetos são, respectivamente, a altura do cone (8 cm) e o raio da base do cone (r).
A hipotenusa é a geratriz do cone.
$\,G^2\;=\;h^2\;+\;r^2\;\Rightarrow\;$ $\,10^2\,=\,8^2\,+\,r^2\;\Rightarrow\;$ $\,r^2\,=\,100\,-\,64\;\Rightarrow\;$ $r\;=\;6\,cm$
O raio da base mede 6 cm
×
A altura de um cone circular reto é h . A geratriz está inclinada em relação ao plano da base de um ângulo de 60°. Determine o raio da base.

 



resposta:
cone com geratriz formando 60 graus com o plano da base
Observe na figura que (sendo um cone circular reto) a geratriz é a hipotenusa de um triângulo retângulo cujos catetos são a altura e o raio da base.

Considerando-se que a tangente de 60° é igual a $\,\sqrt{\,3\;}\,$ temos:

$\,\operatorname{tg}60^o\,=\,\dfrac{{\text cateto}\;{\text oposto}}{{\text cateto}\;{\text adjacente}}\,=\,\dfrac{\,h\,}{\,r\,}\,\Rightarrow$

$\,\dfrac{\;h\;}{\;r\;}\,=\,\sqrt{\,3\;}\;\Rightarrow\;r\,=\,\dfrac{\;h\;}{\;\sqrt{\,3\;}\;}\,=$ $\,\dfrac{h\sqrt{3}}{3}\,$
O raio da base mede $\,r\,=\,\dfrac{h\sqrt{3}}{3}\,$
×
Sabendo que a área da base de um cone circular reto mede $\;16\pi\,cm^2\;$ e sua geratriz $\;5\,cm\;$, determine a altura do cone.

 



resposta:
cone circular reto com área da base 16 pi cm²
Sendo o cone circular, sua base é um círculo.
Podemos calcular o raio da base:
$\,\require{cancel} S_{\text base}\,=\,\pi\,r^2\,=\,16\,\pi\;\Rightarrow$ $\,r^2\,=\,\dfrac{\,16\,\cancel{\pi}\,}{\cancel{\pi}}\,$
$\,\boxed{\;r = 4\;}\,$
Considerando-se o triângulo retângulo de catetos h e r com hipotenusa 5 cm, temos:
(geratriz)² = (raio)² + (altura)²
$\,4^2\,+\,h^2\,=\,5^2\,\;\Rightarrow$ $\,h^2\,=\,25\,-\,16\;\Rightarrow$ $\,h\,=\,3\,$cm
A altura mede 3 cm
×
(FEI) Um triângulo retângulo de catetos b e c , com b > c , quando gira em torno desses lados gera dois sólidos de volumes Vb e Vc , respectivamente. Determine qual o maior volume, justificando a resposta.

 



resposta: Vb < Vc
×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N .
a) Achar a distância AB.
b) Achar a distância MN.
dois cubos sobrepostos de centros M e N e arestas 1 cm e 2 cm

 



resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações:
Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
vista lateral do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{AB})^{\large 2}\,=\,(1)^{\large 2}\,+\,(3)^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{AB}\,=\,\sqrt{10} \mbox{ cm}\;}$
Considerações:
Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
secção diagonal do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
Consideremos o triângulo NPM reto em P.
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{MN})^{\large 2}\,=\,(\dfrac{\sqrt{2}}{2})^{\large 2}\,+\,(\dfrac{3}{2})^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2} \mbox{ cm}\;}$

×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
Veja exercÍcio sobre:
cilindro
pirâmide
geometria de posição
geometria espacial
volume do cilindro
pirâmide inscrita no cilindro