Lista de exercícios do ensino médio para impressão
(STA CASA - 1982) Na figura ao lado, tem-se o triângulo $\;ABC\;$ tal que $\;\overline{AB}\;$ está contido num plano $\;\alpha\;$, $\;C \notin \alpha\;$ e os ângulos de vértices $\;B\;$ e $\;C\;$ medem, respectivamente, 70° e 60°. Se $\;r\;$ // $\;\alpha\;$, $\;r \cap \overline{AC} = [M]\;$, $\;r \cap \overline{BC} = [N]\;$, $\;s\;$ contém a bissetriz do ângulo $\;\widehat{CAB}\;$ e $\;r \cap s = [X]\;$, então a medida do ângulo $\;\widehat{AXN}$, assinalado é:
a) 165°
b) 155°
c) 145°
d) 130°
e) 120° 
imagem do triângulo no plano alfa

 



resposta: alternativa B
×
(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?
a)
5
b)
10
c)
15
d)
18
e)
24

 



resposta:

O prisma é chamado pentagonal quando suas bases superior e inferior são pentágonos.

O prisma pentagonal não é necessariamente reto. Significa que num prisma pentagonal as arestas laterais podem ser perpendiculares aos planos das bases (prisma pentagonal reto) ou podem ser oblíquas (prisma pentagonal oblíquo).
Nem o pentágono das bases é necessariamente regular. Significa que o polígono da base tem 5 lados (pentágono), mas os lados e ângulos do polígono podem ser diferentes entre si.
As bases de um mesmo prisma são sempre congruentes.
Resolução:
diagonais num prisma pentagonal
As diagonais internas de um prisma são segmentos de reta que ligam os vértices da base inferior aos vértices da base superior, excluídas as diagonais das faces e as arestas.

Modo intuitivo:
A observação da figura ao lado é importante para desenvolver a capacidade intuitiva de cálculo com polígonos.
Da base inferior do prisma pentagonal são traçados cinco segmentos, cada um com uma extremidade no ponto V , vértice da base, e outra extremidade nos vértices da base superior, que estão numerados 1, 2, 3, 4 e 5.
1. O segmento V-1 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
2. O segmento V-2 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
3. O segmento V-3 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
4. O segmento V-4, traçado em verde, liga um vértice da base inferior a um vértice da base superior mas por ser uma aresta lateral está excluído e NÃO É UMA DIAGONAL DO PRISMA.
5. O segmento V-5 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
Concluímos das afirmações acima e da análise cuidadosa da figura, que de cada vértice de uma base partem apenas dois segmentos que são diagonais do sólido. Como a base tem 5 vértices, $\,5\,\times\,2\,=\,10\,$ e são 10 as diagonais do prisma pentagonal.
Resposta:
Alternativa B
×
(ITA - 1990) Na figura abaixo $\phantom{X} O\phantom{X}$ é o centro de uma circunferência. Sabendo-se que a reta que passa por $\;E\;$ e $\;F\;$ é tangente a esta circunferência e que a medida dos ângulos $\;1\;$, $\;2\;$, e $\;3\;$ é dada, respectivamente , por 49° , 18° , 34° , determinar a medida dos ângulos 4 , 5 , 6 e 7 . Nas alternativas abaixo considere os valores dados iguais às medidas de 4, 5 , 6 e 7 , respectivamente.
circunferência com ângulos
a)
97°, 78°, 61°, 26°
b)
102°, 79°, 58°, 23°
c)
92°, 79°, 61°, 30°
d)
97°, 79°, 61°, 27°
e)
97°, 80°, 62°, 29°

 



resposta: (D)
×
(FGV - 1978) O perímetro da figura abaixo é:
a)
$2(\sqrt{2} + \sqrt{3})$
b)
$(\sqrt{2} + \sqrt{3})^{2}$
c)
$4 + \sqrt{2} + \sqrt{6}$
d)
$\sqrt{3}+\sqrt{2}+2\sqrt{6}$
e)
$5$
figura do exercício m1504250926.png

 



resposta: Alternativa C
×
(CESGRANRIO - 1980) Um dos ângulos internos de um paralelogramo de lados 3 e 4 mede 120° . A maior diagonal deste paralelogramo mede:
a)
$5$
b)
$6$
c)
$\sqrt{40}$
d)
$\sqrt{37}$
e)
$6,5$

 



resposta: (D)
×
(UFGO - 1980) No triângulo abaixo, os valores de x e y , nesta ordem, são:
a)
$\;2\;$ e $\;\sqrt{3}$
b)
$\;\sqrt{3}\,-\,1\;\;$ e $\;2$
c)
$\;\dfrac{2\sqrt{3}}{3}\;$ e $\;\dfrac{\sqrt{6}\,-\,\sqrt{2}}{3}$
d)
$\;\dfrac{\sqrt{6}\,-\,\sqrt{2}}{3}\;$ e $\;\dfrac{2\sqrt{3}}{3}$
e)
$\;2\;$ e $\;\sqrt{3}\,-\,1$
representação do triângulo

 



resposta: (E)
×
(MACKENZIE - 1977) Na figura ao lado, $\;AB\,$ vale:
a)
60
b)
65
c)
70
d)
75
e)
não sei.
polígono com lado AB

 



resposta: Alternativa D
×
Determine as medidas dos seguintes ângulos em radianos (rad):

ângulos e arcos

 



resposta: a) 1,20 ; b) 2,9 ; c) 4,57 ; d) 0,80

×
(PUC-SP - 1984) A soma A + B + C + D + E das medidas dos ângulos:
a)
é 60°.
b)
é 120°.
c)
é 180°.
d)
é 360°.
e)
varia de "estrela" para "estrela".
imagem do exercício m1505181127.png

 



resposta: Alternativa C

×
(CESESP - 1986) Na figura abaixo as retas $\;r\;$ e $\;s\;$ são paralelas e as retas $\;t\;$ e $\;v\;$ são perpendiculares.
plano com 2 paralelas cortadas por 2 transversais perpendiculares entre si
Assinale, então, dentre as alternativas abaixo, a única que completa corretamente a sentença: " os ângulos distintos $\;\alpha\;$ e $\;\beta\;$ são...
a)
opostos pelo vértice"
b)
adjacentes"
c)
suplementares"
d)
complementares"
e)
sempre congruentes"

 



resposta: Alternativa D
×
(CESGRANRIO - 1989) Na figura, as retas $\,{\large r}\,$ e $\,{\large r'}\,$ são paralelas, e a reta $\,{\large s}\,$ é perpendicular a $\,{\large t}\,$. Se o menor ângulo entre $\,{\large r}\,$ e $\,{\large s}\,$ mede 72°, então o ângulo $\alpha$ da figura mede:
duas paralelas cortadas por duas perpendiculares
a)
36°
b)
32°
c)
24°
d)
20°
e)
18°

 



resposta: Alternativa E
×
(CESGRANRIO - 1990) Duas retas paralelas são cortadas por uma transversal, de modo que a soma de dois dos ângulos formados vale 72°. Então, qualquer dos ângulos obtusos formados mede:
a)
142°
b)
144°
c)
148°
d)
150°
e)
152°

 



resposta: Alternativa B
×
(CESGRANRIO - 1991) As retas $\;r\;$ e $\;s\;$ da figura são paralelas cortadas pela transversal $\;t\;$. Se o ângulo $\;B\;$ é o triplo de $\;A\;$, então $\;B\; - \;A\;$ vale:
duas paralelas cortadas por uma transversal
a)
90°
b)
85°
c)
80°
d)
75°
e)
60°

 



resposta: Alternativa A
×
(FUVEST - 1977) Num triângulo $\,ABC\,$, os ângulos $\hat{B}$ e $\hat{C}$ medem $50^o$ e $70^o$, respectivamente. A bissetriz relativa ao vértice $A$ forma com a reta $\overleftrightarrow{BC}$ ângulos proporcionais a:
a)
1 e 2
b)
2 e 3
c)
3 e 4
d)
4 e 5
e)
5 e 6

 



resposta: (D)
×
(UFMG - 1992) Os pontos $\;A, B, C, D\;$ são colineares e tais que $\;AB = 6$ cm, $\;BC = 2$ cm, $\;AC = 8$ cm e $\;BD = 1$ cm. Nessas condições, uma possível disposição desses pontos é:
a)
$ADBC$
d)
$BACD$
b)
$ABCD$
e)
$BCDA$
c)
$ACBD$

 



resposta: Alternativa A
×
(PUC-SP - 1980) Na figura abaixo, a = 100° e b = 110° . Quanto mede o ângulo x ?
a)
30°
b)
50°
c)
80°
d)
100°
e)
120°
triângulo isósceles com ângulos externos

 



resposta: Alternativa A
×
(FUVEST - 1981) Na figura AB = BD = CD . Então:
a)
y = 3x
b)
y = 2x
c)
x + y = 180°
d)
x = y
e)
3x = 2y
figura do exercício ângulos do triângulo

 



resposta: Alternativa A
×
(UFMG - 1981) Os ângulos $\alpha$ e $\beta$ da figura medem:
a)
$\alpha\,=\,20^o\;,\;\,\beta\,=\,30^o$
b)
$\alpha\,=\,30^o\;,\;\,\beta\,=\,20^o$
c)
$\alpha\,=\,60^o\;,\;\,\beta\,=\,20^o$
d)
$\alpha\,=\,20^o\;,\;\,\beta\,=\,20^o$
e)
$\alpha\,=\,10^o\;,\;\,\beta\,=\,20^o$
triângulo do exercício sobre ângulos

 



resposta: Alternativa D
×
(UCMG - 1982) Na figura ao lado, o ângulo $\phantom{X}A\hat{D}C\phantom{X}$ é reto. O valor, em graus, do ângulo $\phantom{X}C\hat{B}D\phantom{X}$ é de:
a)
95
b)
100
c)
105
d)
110
e)
120
triângulo ADC

 



resposta: Alternativa B
×
(PUC-SP - 1980) Na figura BC = CA = AD = DE . O ângulo $\;C\hat{A}D\;$ mede:
a)
10°
b)
20°
c)
30°
d)
40°
e)
60°
triângulo ABE isósceles

 



resposta: Alternativa B
×
(PUC-SP - 1984) Em um triângulo isósceles a média aritmética das medidas de dois de seus ângulos é 50°. A medida de um dos ângulos do triângulo pode ser:
a)
100°
d)
30°
b)
90°
e)
20°
c)
60°

 



resposta: Alternativa E
×
(FUVEST - 1991) Na figura, AB = AC , BX = BY e CZ = CY . Se o ângulo A mede 40° , então o ângulo XYZ mede:
a)
40°
b)
50°
c)
60°
d)
70°
e)
90°
triângulo com ângulo A 40 graus

 



resposta: Alternativa D
×
(UFMG - 1992) Observe a figura.

triângulo equilátero com bissetrizes

Nessa figura, $\overline{AB} \cong \overline{AC}$, $\overline{BD}$ bissetriz de $A\hat{B}C$, $\overline{CE}$ bissetriz de $B\hat{C}D$ e a medida do ângulo $A\hat{C}F$ é $140^0$. A medida do ângulo $D\hat{E}C$, em graus, é:
a)
20
b)
30
c)
40
d)
50
e)
60

 



resposta: Alternativa C
×
(UFRPE - 1991) Observe que, na figura abaixo, a reta $\phantom{X}{\large \ell}\phantom{X}$ faz ângulos idênticos com as retas $\phantom{X}{\large \ell_1}\phantom{X}$ e $\phantom{X}{\large \ell_2}\phantom{X}$. A soma $\;\alpha\,+\,\beta\,+\,\gamma\;$ vale:
a)
180°
b)
215°
c)
230°
d)
250°
e)
255°
feixe de retas

 



resposta: Alternativa C
×
(FUVEST - 1978) Na figura abaixo, os ângulos $\;\;{\large\hat{a}}\;\;$, $\;\;{\large\hat{b}}\;\;$, $\;\;{\large\hat{c}}\;\;$ e $\;\;{\large\hat{d}}\;\;$ medem, respectivamente, $\;\;\dfrac{x}{2}\;$, $\;\;2x\;$, $\;\;\dfrac{3x}{2}\;\;$ e $\;\;x\;\;$. O ângulo $\;\;{\large\hat{e}}\;\;$ é reto. Qual a medida do ângulo $\;\;{\large\hat{f}}\;$?
polígonos, ângulos
a)
16°
b)
18°
c)
20°
d)
22°
e)
24°

 



resposta: Alternativa B
×
(COVEST - 1990) No triângulo ABC, o ângulo $\hat{A}$ mede 110°. Qual a medida do ângulo agudo formado pelas retas que fornecem as alturas relativas aos vértices B e C?
a)
60°
b)
80°
c)
70°
d)
75°
e)
65°
triângulo ABC com ângulo 110 graus

 



resposta: Alternativa C
×
(FATEC - 1978) Na figura abaixo, $\;\;r\;\;$ é a bissetriz do ângulo $\;\;A\hat{B}C\;\;$. Se $\;\;\alpha = 40^o\;\;$ e $\;\;\beta = 30^o\;\;$, então:
triângulo ABC
a)
$\gamma = 0^o$
b)
$\gamma = 5^o$
c)
$\gamma = 35^o$
d)
$\gamma = 15^o$
e) os dados são insuficientes para a determinação de $\gamma$


 



resposta: (B)
×
(PUC-SP - 1981) Qual é o valor de x na figura ao lado?
a)
$\frac{\sqrt{3}}{3}$
b)
$\frac{5\sqrt{3}}{3}$
c)
$\frac{10\sqrt{3}}{3}$
d)
$\frac{15\sqrt{3}}{4}$
e)
$\frac{20\sqrt{3}}{3}$
triângulo retângulo com ângulos 30 graus e hipotenusa 40

 



resposta: Alternativa E
×
(FUVEST - 1977) $\;\;ABC\;\;$ é equilátero de lado $\;\;4\;$; $\;\;\overline{AM}\,=\,\overline{MC}\,=\,2\;$, $\;\;\overline{AP}\,=\,3\;\;$ e $\;\;\overline{PB}\,=\,1\;$. O perímetro do triângulo $\;\;APM\;\;$ é:
a)
$5 + \sqrt{7}$
b)
$5 + \sqrt{10}$
c)
$5 + \sqrt{19}$
d)
$5 + \sqrt{13 - 6{\large\sqrt{3}}}$
e)
$5 + \sqrt{13 + 6{\large\sqrt{3}}}$
triangulo ABC

 



resposta: Alternativa A
×
(CESESP - 1985) Considere a figura abaixo, onde G é o baricentro do triângulo ABC.

triângulo com baricentro
Assinale a única alternativa que corresponde à razão entre as áreas dos triângulos ABG e EGD.
a)
1
b)
2
c)
3
d)
4
e)
12

 



resposta: Alternativa D
×
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
gangorra

 



resposta:
gangorra da vunesp

Considerações:

A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.

A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução:
O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais.
$\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
$\;\dfrac{1,2\, +\, 1,8}{1,8}\,=\,\dfrac{H}{\frac{\sqrt{3}}{2}}\;\Rightarrow\;$ $\;H\,=\,\dfrac{\sqrt{3}}{2}\centerdot\dfrac{30}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{\sqrt{3}}{1}\centerdot\dfrac{15}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{5\sqrt{3}}{6}\;\Rightarrow\;$ corresponde à
Alternativa D

×
Calcular o menor ângulo entre os ponteiros de um relógio que marca 12 horas e 20 minutos.

 



resposta: 110°
×
Calcular, em graus, o ângulo convexo formado pelos ponteiros de um relógio que marca 3h 42min.

 



resposta: 141°
×
Calcular o comprimento de um arco descrito pela extremidade do ponteiro dos minutos, decorridos 22 minutos, sabendo que o ponteiro tem comprimento 3 cm .

 



resposta: $\; \ell = \dfrac{11 \pi}{5}\;$cm
×
(ITA - 2004) Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?
a)
210
b)
315
c)
410
d)
415
e)
521

 



resposta: (A)
×
(ITA - 2004) Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a $\;5^o\;$. Então seu maior ângulo mede, em graus,
a)
120
b)
130
c)
140
d)
150
e)
160

 



resposta: (E)
×
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
Com os dados das figuras abaixo, determine m .
$\alpha \cong 36^o53'$ $\beta \cong 53^o07'$
triângulos retângulos com ângulos alfa e beta

 



resposta: m = 3,6
×
Com os dados das figuras abaixo, determine h .
$\alpha\,\cong\,36^o53'$
$\beta\,\cong\,53^o07'$
dois triângulos ABH e A'H'C

 



resposta: h = 4,8
×
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².

 



resposta:
prisma triangular regular

Considerações:

Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo).

$\phantom{XX}\,\left\{\begin{array}{rcr} a_{\large b} \longrightarrow & \\ h\;\longrightarrow\; & \\ A_{\mbox{base}} \longrightarrow & \\ \end{array} \right.\,$
aresta da base
altura do prisma$\; = a_{\large b}\,$
área da base, o triângulo equilátero
Resolução:
1. Sabemos que a área lateral é igual a $\;10 m^2\;$
A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura).
$\;A_{\mbox{lateral}} \;=\; 3 \centerdot a_{\large b} \centerdot h \;\;\Longrightarrow \;\; A_{\mbox{lateral}} \;=\; 3 (a_{\large b}) ^2\;\;$ então $\;\;\left(a_{\large b}\right)^2 \;=\; \dfrac{10}{3}$
2. Área da base:
(área do triângulo equilátero de lado $\;{\large \ell}\;$ em função da medida do lado do triângulo vale $\;\dfrac{\ell^2 \sqrt{3}}{4}\;$)
Então $\;A_{\mbox{base}} \;=\;\dfrac{\left(a_{\large b}\right)^2\sqrt{3}}{4}\;\;\Longrightarrow \;\;A_{\mbox{base}}\;=\dfrac{10}{3}\centerdot\dfrac{\sqrt{3}}{4}\;m^2\;\Longrightarrow$ $\; \;\;A_{\mbox{base}}\;=\dfrac{10\sqrt{3}}{12}\;m^2$
3. Área total:
$A_{\mbox{total}} \;=\;A_{\mbox{lateral}}\,+\,2\centerdot A_{\mbox{base}} \;\;\Longrightarrow \;\;A_{\mbox{total}}\;=\; 10\,+\,2 \centerdot \dfrac{10\sqrt{3}}{12}$
$\;\boxed{\;A_{total}\; = \;10(1 + \dfrac{\sqrt{3}}{6})\;m^2\;}\;$

×
Na figura, calcule "$\;x\;$" em função de $\;a\;$.
combinação de triângulos retângulos

 



resposta: Resolução:
$\;z^2\; = a^2 + a^2$
$\;y^2\; = z^2 + a^2 \; \Longrightarrow\; y^2 \; = a^2 + a^2 + a^2$
$\;w^2\; = y^2 + a^2\; \; \Longrightarrow\; w^2 = a^2 + a^2 + a^2 + a^2$
$\;x^2\; = w^2 + a^2 \;\Longrightarrow \; x^2 \; = 5 \centerdot a^2$
então
Resposta:
$\;x\; = \; a \sqrt{5}$
Observe que $\;x\; = a \centerdot \sqrt{n + 1}\;$, sendo $\;n\;$ o número de triângulos retângulos.
×
Na figura, $\;\overline{AD}\;$ é bissetriz interna relativa ao lado $\;\overline{BC}\;$. Calcule a medida do segmento $\;\overline{AD}\;$, sendo $\;AB \;= 6 cm$, $\;AC\; = 10 cm$ e $\;m(A\hat{B}C) = 90^o$.

figura do exercício sobre Teorema da Bissetriz Interna

 



resposta:
Resolução:
Observação: O teorema da bissetriz versa que a reta bissetriz de um dos ângulos do triângulo divide o lado oposto a este ângulo em dois segmentos proporcionais às medidas dos lados adjacentes ao ângulo.
triângulo retângulo ABC teoria da bissetriz interna answerm1606221458.png
Pelo Teorema de Pitágoras:
$(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^{2} \;\Rightarrow $
$\;10^2\;= \;6^2 + (\overline{BC})^2 \; \Rightarrow
\;\overline{BC} = \sqrt{64} \;\Longrightarrow \; \overline{BC} = 8$
portanto, na figura $\;a + b\; =\; 8$
Pelo Teorema da Bissetriz Interna,

$\frac{6}{a}\; = \;\frac{10}{b}$$\Rightarrow 5a - 3b \;=\;0$
então:
$\begin{align} 3a + 3b = 24 \phantom{XXXX} (I) \\ \;5a - 3b =\; 0 \phantom{XXXX}(II) \end{align}$
Somando (I) e (II) $\Longrightarrow 5a + 3a = 24 \Longrightarrow$
$\;a \; = 3\;$ e $\;b\;=\;5$
Usando o teorema de Pitágoras no triângulo retângulo ABD:
$\;h^2 = 6^2 + 3^2 \;\;\Rightarrow h^2 \;= 36 + 9 \;\;\Rightarrow h\;=\; 3\sqrt{5} $
Resposta:
A medida do segmento $\;\overline{AD}\;$ é $\;3\sqrt{5}\;cm$
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
(PUC - 1973) Sabendo-se que o triângulo $\phantom{X}ABC\phantom{X}$ é retângulo e $\;\overline{AH}\,=\,h\;$ é a medida da altura do triângulo, quais das relações são válidas:
a)
$x\;=\;b\centerdot c$
b)
$x^2\;=\;h\centerdot c$
c)
$x^2\;=\;b\centerdot d$
d)
$x^2\;=\;b\centerdot c$
e)
nenhuma das anteriores
triângulo retângulo ABC com altura h

 



resposta: (D)
×
(PUC - 1973)
Na figura, sabendo-se que:

$\overline{AE}\;=\;30\;$m , $\;\;\overline{BD}\;=\;40\;$m
$\;\overline{AB}\;=\;50\;$m , $\;\;\overline{EC}\;=\;\overline{CD}$

Então, $\;\overline{AC}\;$ e $\;\overline{CB}\;$ valem, respectivamente:
a)
25 m e 25 m
b)
32 m e 18 m
c)
38 m e 12 m
d)
40 m e 10 m
e)
nenhuma das
anteriores
triângulos retângulos EAC e CBD

 



resposta: alternativa B
×
Determine a medida do segmento $\phantom{X}{\large x}\phantom{X}$
mostrado na figura:
triângulos

 



resposta: $\;x\;=\;2\sqrt{11}$

×
Com os dados da figura ao lado,
determine o valor de " x ".
dois triângulos retângulos

 



resposta: x = 12
×
Na figura abaixo, determinar o valor de "x" .
triângulos cruzados

 



resposta: x = 25
×
A que horas da noite os ponteiros de um relógio coincidem entre os números 8 e 9 do mostrador?

 



resposta: 20 h 43 min 37,2 seg.
×
(STO AMARO) Se forem indicados por $\;a \text{, } b \text{, } c \;$ os três lados de um triângulo e $\;\hat{A} \text{, } \hat{B} \text{, }\hat{C}\;$, respectivamente, os ângulos opostos a esses lados, então sendo conhecidos os lados $\;a \text{, } b\;$ e o ângulo $\,\hat{B}\,$, assinale qual das fórmulas abaixo poderá ser utilizada para calcular o lado $\,c\,$.
a) $\,a^2\,=\,b^2\,+\,c^2\,-\,2bc\,\operatorname{cos}A\,$
b) $\,b^2\,=\,a^2\,+\,c^2\,+\,2ac\,\operatorname{cos}(A\,+\,C)\,$
c) $\,c^2\,=\,a^2\,+\,b^2\,-\,2ab\,\operatorname{cos}C\,$
d) $\,c^2\,=\,a^2\,+\,b^2\,-\,2ab\,\operatorname{cos}(A\,+\,B)\,$
e) $\,b^2\,=\,a^2\,+\,c^2\,+\,2ac\,\operatorname{cos}(A\,+\,B)\,$

 



resposta: (B)
×
(GOIÂNIA) Em um triângulo retângulo $\,ABC\,$ os ângulos $\;\hat{B}\text{ e } \hat{C}\;$ são agudos. Se a hipotenusa mede 3 cm. e $\,\operatorname{sen}C\,=\,{\large \frac{\operatorname{sen}B}{2}}\;$, calcule as medidas dos catetos.

 



resposta: $\,\frac{3 \sqrt{5}}{5}\,\text{cm. e }\,\frac{6\sqrt{5}}{5}\,\text{cm.}$

×
(ITA - 1979) O valor numérico de um ângulo excede o de seu seno de 11% do valor do ângulo. O seno desse ângulo é 0,75 portanto o valor do ângulo é de aproximadamente:
a)
0,833 rad
c)
48°
b)
0,84°
d)
0,676 rad
e)
39°

 



resposta: Resolução:
$\theta\,=\,\operatorname{sen}\theta\,+\,0,11\theta$
$\theta\,=\,0,75\,+\,0,11\theta$
$0,89\theta\,=\,0,75$
$\theta = {\large\frac{0,75}{0,89}}\,=\,0,84\,\text{rad} $
regra de 3:$\phantom{X} \left.\begin{array}{rcr} \pi \,\text{rad}\,=\,180^o \;& \\ 0,84\,\text{rad}\,=\,\theta \;& \\ \end{array} \right\} \phantom{X} \theta\,=\,{\large \frac{0,84 \centerdot 180}{3,1416}}\;\Longrightarrow\;\theta\,=\,48,12^o $
ou $\phantom{X}\boxed{\;\theta\,\simeq\,48^o\;}$
Resposta:
alternativa C
×
(ITA - 1979) Considere o triângulo ABC , onde AD é a mediana relativa do lado BC . Por um ponto arbitrário M do segmento BD , tracemos o segmento MP paralelo a AD , onde P é o ponto de intersecção desta paralela com o prolongamento do lado AC . Se N é o ponto de intersecção de AB com MP , podemos afirmar que:
a)
MN + MP = 2BM
b)
MN + MP = 2CM
c)
MN + MP = 2AB
d)
MN + MP = 2AD
e)
MN + MP = 2AC
triângulo ABC com mediana AD e prolongamento de AC

 



resposta:
Resolução:
1.$\;\overline{MN}\;$ é paralelo a $\;\overline{AD}\;$ e $\;\overline{AD}\;$ é paralelo a $\;\overline{MP}\;$
$MN // AD\;\Rightarrow\;$ $\;\triangle BMN\thicksim\triangle BDA\;\Rightarrow\;\dfrac{MN}{DA}\,=\,\dfrac{BM}{BD}\;\Rightarrow\;$ $\;MN\,=\,DA\centerdot\, \dfrac{BM}{BD}\phantom{X}$(I)
$AD // MP\;\Rightarrow\;\triangle MPC\thicksim\triangle DAC\;\Rightarrow\;$ $\; \dfrac{MP}{DA}\,=\, \dfrac{MC}{DC}\;\Rightarrow\;$ $\;MP\,=\,DA\centerdot\,\dfrac{MC}{DC}\phantom{X}$(II)
2. Fazendo a soma (I) + (II):
$\;MN\,+\,MP\,=\,$ $\,DA\,\centerdot\,\dfrac{BM}{BD}\,+\,DA\,\centerdot\,\dfrac{MC}{DC}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,(\dfrac{BM}{BD}\,+\, \dfrac{MC}{DC})$
3.$\;AD\;$ é a mediana relativa ao lado $\;BC\;\Rightarrow\;D\;$ é ponto médio de $\;BC\;\Rightarrow\;BD\,=\,DC\;$.
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM}{BD}\,+\, \dfrac{MC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM + MC}{BD}\right)$
4. Da figura, $\;BM\,+\,MC\,=\,BC\;$, então concluimos que:
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left( \dfrac{BC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{(BD\,+\,DC)}{BD}\;\Leftrightarrow$
$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,\dfrac{(BD\,+\,BD)}{BD}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{2(BD)}{BD}\;\Leftrightarrow$$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,2\;\Leftrightarrow\;$
$\;\boxed{\;MN\,+\,MP\,=\,2\,\centerdot\,DA\;}$
Resposta:
(D)

×
Na figura a seguir, o ângulo $\,A\hat{D}C\,$ mede  46°  e os triângulos $\,ACD\,$, $\,DBE\,$ e $\,EAF\,$ são isósceles de bases $\,\overline{AD}\,$, $\,\overline{DE}\,$ e $\,\overline{EF}\,$, respectivamente.
Quanto mede o ângulo $\,D\hat{E}F\,$?
triângulos com ângulo de 46 graus

 



resposta: o ângulo DEF mede 44°
×
Num prisma quadrangular regular, a área lateral mede 32 m² e o volume 24 cm³ . Calcular as suas dimensões.

 



resposta:

Um prisma é chamado quadrangular quando suas bases são quadrados.

Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETO e suas bases são POLÍGONOS REGULARES.

RETO → as arestas laterais são todas perpendiculares aos planos das bases

REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.

A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases.
A área total de um prisma é a soma da área lateral às áreas das bases.
O volume de um prisma é a área da base multiplicada pela altura do prisma.

prisma quadrangular regular indicados lados, bases e arestas
paralelepípedo prisma quadrangular de lado da base a e altura h
Resolução:
Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
Dividindo (II) por (I) temos:
$\;\dfrac{a^{\large 2}h}{ah}\,=\,\dfrac{24}{8}\;\Rightarrow\;\boxed{\,a\,=\,3\,m\,}\;$
Substituindo $\;a\,=\,3\;$ em (I):
$\;3\centerdot h\,=\,8\;\Rightarrow\;\boxed{\,h\,=\,\dfrac{8}{3}\,m\,}\;$
Resposta:As dimensões do prisma são
aresta da base igual a 3 m e altura igual a 8/3 m
×
(FGV - 1976) As peças de um jogo de dominó são pequenos retângulos de madeira, divididos em duas metades. Em cada metade está marcado um certo número de pontos. As peças são feitas de forma que os totais de pontos que aparecem em cada uma das metades são perfeitamente permutáveis girando-se a peça de meia volta. Por exemplo, a peça (2, 5) é também a peça (5, 2). Se em cada metade podem aparecer desde nenhum ponto até n pontos, então o número de peças diferentes é:
a)
$\,\dfrac{n(n\,+\,1)}{2}\,$
b)
$\,\dfrac{n(n\,-\,1)}{2}\,$
c)
$\,(n\,+\,1)!\,$
d)
$\,\dfrac{(n\,+\,1)!}{2}\,$
e)
$\,\dfrac{(n\,+\,2)(n\,+\,1)}{2}\,$

 



resposta: (E)
×
(ITA - 1982) Num triangulo isóceles, o perímetro mede 64 m e os ângulos adjacentes são $\,arc\,cos\dfrac{7}{25}\;$. Então a área do triangulo é de:
a) 168 m²b) 192 m²c) 84 m²d) 96 m²e) 157 m²
168 m²192 m²84 m²96 m²157 m²

 



resposta: (A)
×
(FUVEST - 2018) Doze pontos são assinalados sobre quatro segmentos de reta de forma que três pontos sobre três segmentos distintos nunca são colineares, como na figura.
12 pontos em segmentos
O número de triângulos distintos que podem ser desenhados com os vértices nos pontos assinalados é:
a)
200
b)
204
c)
208
d)
212
e)
220

 



resposta: Alternativa D
Resolução:
segmentos de reta com pontos fuvest 2018
Na figura, os pontos F, G, H e I são evidentemente colineares e, como tal, não podem formar triângulos entre si.
O número de combinações desses 4 pontos tomados três a três é $\;C_{\large 4,3}\;$ e deve ser retirado do número de triângulos que podem ser formados com os 12 pontos.
Os pontos X, Y, W e Z são TAMBÉM colineares e não podem formar triângulos entre si.
O número de combinações desses 4 pontos tomados três a três é $\;C_{\large 4,3}\;$ e deve ser retirado do número de triângulos que podem ser formados com os 12 pontos.
O número de combinações de 12 pontos tomados três a três para formar triângulos é $\;C_{\large 12,3}\;$.
Então o número de triângulos com vértices nos pontos da figura é:

$\phantom{X}C_{\large 12,3}\, - \, 2\centerdot C_{\large 4,3}\;$ $\;\Rightarrow\,\dfrac{12!}{3!9!}\,-\,2\centerdot\dfrac{4!}{3!1!}\,=\,\dfrac{12\centerdot 11 \centerdot10}{6}\,-\,2\centerdot 4\,=$ $\,220\,-\,8\,=\,212$

212 é a resposta correspondente ao item D.

×
(FUVEST - 2018) Prolongando-se os lados de um octógono convexo $\,ABCDEFGH\,$, obtém-se um polígono estrelado, conforme a figura.
octógono com lados prolongados
A soma $\,\alpha_{\large 1}\,+\,...\,+\,\alpha_{\large 8}\,$ vale
a)
180°
b)
360°
c)
540°
d)
720°
e)
900°

 



resposta: (B)
×
(FUVEST - 2018) O quadrilátero da figura está inscrito em uma circunferência de raio 1. A diagonal desenhada é um diâmetro dessa circunferência.
círculo com quadrilátero inscrito
Sendo x e y as medidas dos ângulos indicados na figura, a área da região hachurada, em função de x e y, é:

a)
$\,\pi\,+\,\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)\,$
b)
$\,\pi\,-\,\operatorname{sen}(2x)\,-\,\operatorname{sen}(2y)\,$
c)
$\,\pi\,-\,\operatorname{cos}(2x)\,-\,\operatorname{cos}(2y)\,$
d)
$\,\pi\,-\,\dfrac{\operatorname{cos}(2x)\,+\,\operatorname{cos}(2y)}{2}\,$
e)
$\,\pi\,-\,\dfrac{\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)}{2}\,$

 



resposta: Alternativa B
×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
Na figura o comprimento do arco $\,\stackrel \frown{AB}\,$ é 22 cm e O é o centro da circunferência. Então o perímetro da circunferência é:
circunferência com arco AB 45 graus
a)
990 cm
b)
67 cm
c)
176 cm
d)
88 cm
e)
nenhuma das respostas anteriores

 



resposta: Alternativa C
×
(FUVEST - 1977)
Dados:
$\,\overline{MP}\;\bot\;s\,$;$\;\overline{MQ}\;\bot\;t\,$;$\;\overline{MQ}\;\bot\;\overline{PQ}\,$;$\;\overline{MP}\,=\,6$
Então $\,\overline{PQ}\,$ é igual a:
a)
$\,3\sqrt{3}\,$
b)
$\,3\,$
c)
$\,6\sqrt{3}\,$
d)
$\,4\sqrt{3}\,$
e)
$\,2\sqrt{3}\,$
ângulo cujos lados são as semi-retas s e t cortadas pela reta MP perpendicular a s

 



resposta: Alternativa B
×
(MACKENZIE - 1979) No triângulo retângulo ABC da figura, b = 1 e c = 2. Então x vale:
a)
$\,\sqrt{2}\,$
b)
$\,\dfrac{3}{2}\,$
c)
$\,\dfrac{3\sqrt{2}}{2}\,$
d)
$\,\dfrac{2}{3}\,$
e)
$\,\dfrac{2\sqrt{2}}{3}\,$
triângulo ABC reto em A com bissetriz x de A traçada

 



resposta: Alternativa E
×
(FATEC - 1979) Se os catetos de um triângulo retângulo T medem, respectivamente, 12 cm e 5 cm, então a altura de T relativa à hipotenusa é:
a)
$\,\dfrac{12}{5}\,$ cm
b)
$\,\dfrac{5}{13}\,$ cm
c)
$\,\dfrac{12}{13}\,$ cm
d)
$\,\dfrac{25}{13}\,$ cm
e)
$\,\dfrac{60}{13}\,$ cm

 



resposta: Alternativa E
×
(FATEC - 1979) Na figura abaixo, ABFG e BCDE são dois quadrados com lados, respectivamente, de medida a e b. Se $\;\overline{AG}\,=\,\overline{CD}\,+\,2\;\,$ e o perímetro do triângulo ACG é 12, então, simultaneamente, a e b pertencem ao intervalo:
a)
]1; 5[
b)
]0; 4[
c)
]2; 6[
d)
]3; 7[
e)
]4; 8[
dois quadrados com lados de medida respectivas a e b

 



resposta: (B)
×
(FATEC - 1979) Na figura, ABCD é um retângulo. $\,\overline{AB}\,=\,4\,$, $\,\overline{BC}\,=\,1\;$ e $\,\overline{DE}\,=\,\overline{EF}\,=\,\overline{FC}\;$. Então $\,\overline{BG}\,$ é:
a)
$\,\dfrac{\sqrt{5}}{4}\,$
b)
$\,\dfrac{5}{2}\,$
c)
$\,\dfrac{9}{4}\,$
d)
$\,\dfrac{11}{4}\,$
e)
$\,\dfrac{5}{\sqrt{2}}\,$
retângulo ABCD cuja base coincide com a base do triângulo ABG

 



resposta: Alternativa B
×
(PUC CAMP - 1980) Os lados paralelos de um trapézio retângulo medem 6 cm e 8 cm, e a altura mede 4 cm. A distância entre o ponto de instersecção das retas suporte dos lados não paralelos e o ponto médio da maior base é:
a)
$\,5\sqrt{15}\,$ cm
b)
$\,2\sqrt{19}\,$ cm
c)
$\,3\sqrt{21}\,$ cm
d)
$\,4\sqrt{17}\,$ cm
e)
nenhuma das anteriores
 
 

 



resposta: Alternativa D
×
No triângulo $\,ABC\,$ da figura, $\,\overline{AS}\,$ é bissetriz interna relativa do vértice $\,A\,$.
Prove que $\;\dfrac{AB}{AC}\,=\,\dfrac{BS}{CS}\;$ (sugestão: Teorema de Tales)
triângulo provar teorema da bissetriz interna

 



resposta: demonstração.
demonstração do teorema da bissetriz interna utilizando o teromea de Tales
1. No triângulo $\,ABC\,$, construimos $\, \overleftrightarrow{MC}\,//\, \overleftrightarrow{AS}\,\longrightarrow\;$ pelo teorema fundamental do paralelismo temos
$\,\hat{M}\,=\,B\hat{A}S\,=\,\alpha\,$ (ângulos correspondentes)
$\,\hat{C}\,=\,C\hat{A}S\,=\,\alpha\,$ (alternos internos)
Se $\,\hat{M}\,=\,\hat{C}\,=\,\alpha\,\therefore\,\,\triangle ACM\,$ é isósceles com $\,\boxed{\,\overline{AC}\,\cong\,\overline{AM}\,}$
2. Pelo Teorema de Tales:
$\phantom{X}\dfrac{AB}{AM}\,=\,\dfrac{BS}{CS}\phantom{X}$, mas $\,\overline{AC}\,\cong\,\overline{AM}\,$ então: $\phantom{X}\dfrac{AB}{AC}\,=\,\dfrac{BS}{CS}\phantom{X}$

c.q.d.


×
Demonstrar que, num paralelepípedo reto retângulo, o quadrado da soma das medidas das arestas é igual à soma do quadrado da diagonal com a área total.

 



resposta: demonstração.
Nesse caso o paralelepípedo é chamado RETO RETÂNGULO:
RETO significa: as arestas laterais são perpendiculares aos planos das bases.

As faces laterais de todo prisma reto são sempre retângulos

.
RETÂNGULO significa: suas bases são retângulos. Poderia ser chamado retangular.

Observação importante: Se você ainda não viu como calcular a diagonal de um paralelepípedo retangular reto veja este exercício sobre diagonal do prisma retangular reto.

prisma reto retangular
Resolução:

Queremos provar que a soma das medidas das arestas é igual ao quadrado da diagonal somado à área total.

diagonal do prisma reto retânguo D
Hipótese:
$\,\left\{\begin{array}{rcr} \mbox{prisma reto retangular} & \\ \mbox{dimensões }\,a,\, b \mbox{ e }c\phantom{XX}\; &\\ \mbox{diagonal }\,D\phantom{XXXXX}\;\, & \\ \mbox{área total }\,A_{\large t}\phantom{XXXXX} & \end{array} \right.\,$
Tese:
$\,\lbrace(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\;$
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I)
2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II)
3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III)
então substituindo em (I) as assertivas (II) e (III) temos que:
$\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $

c.q.d.


×
O triângulo retângulo $\,OAB\,$ gira em torno do cateto $\,OA\,$, determinando um sólido no espaço. O volume gerado pela região $\,OAM\,$ é igual ao gerado pela região $\,OMB\,$. Então a razão $\,\dfrac{AM}{AB}\,$ será:
a)
$\,\dfrac{1}{2}\,$
b)
$\,\dfrac{1}{3}\,$
c)
$\,\sqrt{2}\,$
d)
$\,2\sqrt{2}\,$
e)
$\,\dfrac{\sqrt{2}}{2}\,$
triângulo retângulo OAB com segmento OM

 



resposta:
cone de revolução gerado pelo triângulos AOB
Considerações:

Uma região gerada por um triângulo retângulo girando uma volta completa em torno de um de seus catetos é um cone circular reto chamado de cone de revolução.

Observe atentamente a figura ao lado e verifique que:
1. o triângulo retângulo OAB gira em torno do cateto OA gerando o cone circular representado com superfície verde.
2. o triângulo retângulo OAM interno gira em torno do cateto OA gerando o cone circular interno representado na cor cinza.
A reta que contém o segmento OA é chamada eixo de ambos os cones.
Segundo o enunciado:
1. o volume do cone interno cinza gerado pelo triângulo OAM é o mesmo volume que o cone externo gerado pelo triângulo OAB subtraído o volume interno do cone gerado por OAM. Como na figura, o volume do cone externo verde subtraído o cone interno cinza é igual ao volume do cone interno cinza.
2. o examinador deseja a razão $\;\dfrac{\overline{AM}}{\overline{AB}}\,$, que é a razão do cateto inferior de OAM sobre o cateto inferior de OAB: $\;\rightarrow\,\dfrac{\overline{AM}}{\overline{AB}}\;=\;\dfrac{(a)}{(a\,+\,b)}$
Resolução:
Volume gerado pela região OAM é $\,\dfrac{\pi(a)^{\large 2}\centerdot H}{3}\,=\,\dfrac{\pi H(a)^{\large 2}}{3}\;\;$(I)
Volume gerado pela região OMB é :(volume do cone gerado OAB) subtraído (volume gerado por OAM): $\,\dfrac{\pi(\overline{AB})^{\large 2}\centerdot H}{3}\, - \,\dfrac{\pi(\overline{AM})^{\large 2}\centerdot H}{3}\phantom{X}=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (\overline{AB})^{\large 2}\,-\,(\overline{AM})^{\large 2} \right)\;\;=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)\;\;$(II)
Conforme o enunciado, igualando (I) e (II) temos:
$\,\require{cancel} \cancel{\dfrac{\pi H}{3}}(a)^{\large 2}\, = \,\cancel{\dfrac{\pi H}{3}}\left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)$
$\, (a)^{\large 2}\, = \,(a + b)^{\large 2}\,-\,(a)^{\large 2}$
$\, 2(a)^{\large 2}\, = \,(a + b)^{\large 2}\phantom{X}\Rightarrow\phantom{X}$
dividindo os dois lados da igualdade por $\,2(a\,+\,b)^{\large 2}$
$\dfrac{2(a)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,=\,\dfrac{(a\,+\,b)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,$ $\phantom{X}\Rightarrow\phantom{X}\dfrac{\cancel{2}(a)^{\large 2}}{\cancel{2}(a\,+\,b)^{\large 2}}\,=\,\dfrac{\cancel{(a\,+\,b)^{\large 2}}}{2\cancel{(a\,+\,b)^{\large 2}}}\,$ $\phantom{X}\Rightarrow\phantom{X}\left(\dfrac{a}{a + b}\right)^{\large 2}\,=\,\dfrac{1}{2}\,\phantom{X}\Rightarrow\phantom{X}$
$\,\left\{\begin{array}{rcr} \dfrac{a}{a + b}\,=\,+\sqrt{\dfrac{1}{2}} \;\Rightarrow\;\boxed{\,\dfrac{a}{a + b}\,=\,+\dfrac{\sqrt{2}}{2}\,} & \; \\ \cancel{\,\dfrac{a}{a + b}\,=\,-\sqrt{\dfrac{1}{2}}\,}\mbox{ (valor negativo)} \phantom{XX}\, & \\ \end{array} \right.\,$
Como trata-se de medida de comprimento e/ou distância, valores negativos não são considerados
A razão $\,\dfrac{\overline{AM}}{\overline{AB}}\,$ é igual a $\,\dfrac{\sqrt{2}}{2}\,$ que corresponde à
Alternativa E
×
(UFMG - 2001) Observe a figura.
Nessa figura, os pontos F , A e B estão em uma reta e as retas CB e ED são paralelas. Assim sendo, o ângulo $\;A\hat{B}C\;$ mede
a)
39°
b)
44°
c)
47°
d)
48°
e)
52°
figura polígono com lados CB e ED paralelos

 



resposta: (D)
×
(UFRN - 1999)
Na figura adiante, o ângulo θ mede:
a)
94°
b)
93°
c)
91°
d)
92°
e)
103°
ângulos de 90, 33 e 31 graus

 



resposta: (D)
×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
(UDESC) A figura mostra uma placa de propaganda, de peso 20N, sustentada por dois cabos, de massas desprezíveis.
placa sustentada por dois cabos
a)
Calcule o módulo da força tensora em cada cabo.
b)
Qual seria a razão entre os módulos das trações calculadas no item (a), se os ângulos mostrados na figura fossem iguais?

 



resposta: a)$10\sqrt{\,3\;}$N e 10 N b) 1
×
O sistema representado na figura está em equilíbrio.
Dados:
sen 37° = cos 53° = 0,6
sen 53° = cos 37° = 0,8
Sabendo-se que a tração na corda (1) é 300 N , a tração na corda (2) é:
a)
500 kg
b)
400 N
c)
4000 N
d)
400 J
e)
4 N
peso P preso ao teto por cabo formando ângulos de 37 e 53 graus com o teto

 



resposta: (B)
×
Três fios são presos a um pequeno anel C de peso desprezível e que se encontra em equilíbrio.
sistema de polias e cabos
Dois desses fios passam por pequenas polias fixas A e B e suportam nas suas extremidade corpos pesados. O terceiro suporta um peso P . Os fios CA e CB formam com a vertical ângulos de 30° e 45° respectivamente. Um peso adicional de 10 N é sobreposto a P . Determinar quais devem ser os pesos adicionais necessários ser acrescentados a cada um dos outros fios para que C permaneça em equilíbrio na mesma posição.

 



resposta: $\,5(\sqrt{\,6\;}\,-\,\sqrt{\,2\;})\,$N e $\,10(\sqrt{\,3\;} - 1)\,$N
×
Um ângulo tem por medida $\,\frac{\;3\;}{\;2\;}\,$ da medida de seu adjacente. O complemento do maior tem na sua medida 15°28' mais do que a diferença entre as medidas do maior e do menor. Calcular as medidas dos ângulos.

 



resposta: resposta59°54' e 37°16'
×
Um projétil é lançado sucessivamente com ângulos de tiro de 30° e 60° e mesmo módulo de velocidade inicial.Desprezando o efeito do ar, calcule:
a) a relação entre as alturas máximas atingidas nos dois casos.
b) a relação entre os alcances horizontais nos dois casos.

 



resposta: a) 1/3 b) 1
×
(PUC) Tomam-se dez pontos sobre uma circunferência. Quantos triângulos podemos contruir com vértices nesses pontos?
a)
12
b)
120
c)
360
d)
720
e)
$\,\frac{\;10!\;}{3}\,$

 



resposta: (B)
×
(CESGRANRIO) Considere 21 pontos dos quais três nunca são colineares. Usando estes pontos como vértices de um triângulo, qual o número total de triângulos distintos que estes pontos determinam?

 



resposta: 1330 triângulos
×
(VUNESP) Sobre uma reta marcam-se 3 pontos e sobre outra reta, paralela à primeira, marcam-se 5 pontos. O número de triângulos que obteremos unindo 3 quaisquer desses pontos é:
a)
26
b)
90
c)
25
d)
45
e)
42

 



resposta: (D)
×
(PUCC) Considere os pontos da representação geométrica do produto cartesiano A×A , onde A = {1, 2, 3} . Quantos triângulos diferentes podemos formar tendo 3 desses pontos como vértice?
a)
496
b)
54
c)
76
d)
84
e)
504
produto cartesiano de AxA com A = {1, 2, 3}

 



resposta: (C)
×
Considere um raio de luz que se reflete em uma superfície plana. O raio incidente é I e o raio refletido é R . O ângulo de incidência é α e o ângulo de reflexão é β .
I -
Os raios I e R estão em um mesmo plano.
II -
O ângulo α é igual ao ângulo β .
III -
Para os ângulos α e β vale a relação (α + β) < 180° .
a)
Somente I é verdadeira.
b)
Somente II é verdadeira.
c)
Somente III é verdadeira.
d)
Somente I e II são verdadeiras.
e)
I, II e III são verdadeiras.

 



resposta: (E)
×
Determine o tamanho mínimo e a posição de um espelho plano vertical para que um observador de altura H, cujos olhos estão à altura h, possa se ver de corpo inteiro.
quadriculado para desenho de imagem no espelho

 



resposta:
Resolução:Vamos construir a imagem no espelho plano e definir a relação entre as medidas.
espelho com imagem simétrica
Passo 1. Marcar os pontos A' e B' simétricos a A e B em relação à superfície do espelho. Desenhar a imagem A'B' simétrica, que na figura (em azul) representa a imagem de AB no espelho.
A medida da distância entre a pessoa AB até o espelho (p) é igual à medida da distância da imagem A'B' ao espelho (p')
destaque ao segmento A'O
Passo 2. Para o observador enxergar a imagem do seu pé, ou seja, enxergar o ponto A, o raio de luz que atinge o seu olho no ponto O deve passar pela imagem do pé no ponto A'.
Desenhe então o raio que parte de A' e atinge O. Lembre-se que atrás do espelho é o ambiente escuro, por isso a porção do raio A'O atrás do espelho é representada como linha pontilhada.
Note na figura que o ponto de cruzamento do raio A'O com o espelho E é o ponto chamado I1. O segmento OI1 representa o raio de luz; o segmento I1A' pontilhado representa o prolongamento do raio que define a imagem da sola do pé A'.
destaque ao segmento AI1

Passo 3. O raio I1O é resultado da reflexão da luz real de um raio que partiu de A e atingiu o espelho no ponto I1.
Desenhar então o raio AI1.
destaque ao raio de luz OB'
Passo 4. Analogamente, para que o observador possa ver a imagem do topo da sua cabeça, o olho deve receber um raio que passa pelo ponto alto da imagem de sua cabeça, o ponto B'.
Desenhamos um raio de luz que atinge O e cujo prolongamento passa pela imagem do topo da cabeça B'.
Note que esse raio de luz OB' cruza com o espelho num ponto que foi chamado I2. O segmento B'I2 é representado por linha pontilhada porque está na área escura do espelho, ou seja, é apenas um prolongamento do raio de luz.
O segmento I2O é o raio de luz na área clara (real), por isso é representado por linha contínua.
destaque ao segmento OI2
Passo 5. O raio I2O é resultado da reflexão de um raio real que partiu de B e atingiu o espelho no ponto I2.
Desenhar então o raio BI2: o raio que, refletido, gerou a imagem do ponto mais alto da cabeça.
semelhança de triângulos no espelho plano
Passo 6. Do esquema ao lado, podemos concluir que o triângulo A'OB' e o triângulo I1OI2 são semelhantes pelo critério (AA∾).
O ângulo $\hat{O}$ é comum a ambos os triângulos A'OB' e I1OI2
Sendo CE paralelo a A'B'(ambos são verticais), então $\hat{I_2}$ e $\hat{B'}$ são ângulos correspondentes.
Sendo CE paralelo a A'B'(ambos são verticais), então $\hat{I_1}$ e $\hat{A'}$ são ângulos correspondentes.
tamanho mínimo de em espelho plano vertical
Passo 7. Conforme o enunciado, a altura do observador em frente ao espelho é H então $\;\overline{AB}\;=\;H\,$
Vamos chamar a dimensão vertical mínima do espelho $\;\overline{I_1I_2}\;$ de $\;d\;$.
Das propriedades da imagem em um espelho plano, sabemos que |p| = |p'| .Da semelhança dos triângulos OI1I2 e OA'B' decorre que:
$\;\dfrac{\;H\;}{\;d\;}\;=\;\dfrac{\;2|p|\;}{|p|}\;\Rightarrow\;H\,=\,2d\;\Rightarrow$
$\;\boxed{\;d\;=\;\dfrac{\;H\;}{\;2\;}\;}\;$

O tamanho mínimo de um espelho plano, na posição vertical, para que uma pessoa possa ver seu corpo inteiro, independe da distância entre a pessoa e o espelho.

posição do espelho em relação ao chão
Passo 8. Vamos chamar de D a posição do espelho em relação ao chão, então $\;\overline{CI_1}\;=\;D\,$
A distância do olho do observador até o chão, segundo o enunciado, é $\;h\;$, então $\;\overline{AO}\;=\;h\,$.
O triângulo AOA' é semelhante ao triângulo CI1A' pelo critério (AA∾)
O ângulo $\;\hat{A}\;$ e o ângulo $\;\hat{C}\;$ são ângulos retos;
O ângulo $\;\hat{A'}\;$ é um ângulo comum aos dois triângulos.
Das propriedades da imagem em um espelho plano, sabemos que |p| = |p'| .
Da semelhança dos triângulos AOA' e CI1A' decorre que:
$\;\dfrac{\;h\;}{\;D\;}\;=\;\dfrac{\;2|p|\;}{\;|p|\;}\;\Rightarrow\;h\;=\;2D\;\Rightarrow$
$\;\boxed{\;D\,=\,\dfrac{\,h\,}{\,2\,}\;}$

A posição de um espelho plano relativa ao solo para que um observador consiga ver-se de corpo inteiro independe da distância do observador ao espelho (p).


×
Na figura temos dois espelhos planos E1 e E2 e representamos o caminho óptico de um raio de luz.
caminho do raio de luz numa associação de espelhos planos

Pede-se:
a) Demonstre que Δ = 2α
b) Discuta o caso em que α = 90°


 



resposta: a) demonstração.
associação de expelhos com ângulos descritos para resposta
(i)
Pela 2ª lei da reflexão temos que:
i1 = r1 e i2 = r2
(ii)
Em relação ao triângulo ABC, o ângulo Δ é externo e, portanto, temos Δ = i1 + r1 + i2 + r2 = 2i2 + 2r1 = 2(i2 + r1)
(iii)
No triângulo OAB, a soma dos ângulos internos vale 180°, e portanto, temos:
 
90 - i2 + 90 - r1 + α = 180
α - i2 - r1 = 0
α = i2 + r1
(iv)
Comparando os valores de Δ e α, fica evidente que:
Δ = 2(i2 + r1)
Δ = 2 α
b) Quando α = 90° temos que Δ = 180°, isso significa que os raios emergentes são paralelos.
×
Considere duas lâminas de vidro de mesmo material, imersas no ar e dispostas paralelamente. Um raio de luz atravessa o sistema.
duas lâminas de faces paralelas e um raio de luz
Sabendo-se que os índices de refração do ar e do vidro valem $\,1\,$ e $\,\sqrt{\;3\;}\,$ respectivamente e que $\,\alpha\,=\,30^o\,$, calcule os ângulos $\phantom{X}\beta,\; \gamma, \; \Delta\phantom{X}$ e $\phantom{X}\varepsilon \phantom{X}$

 



resposta: $\phantom{X}\beta = 60^o,\; \gamma = 30^o, \; \delta = 60^o \; e \; \varepsilon = 30^o \phantom{X}$
×
Considere uma lâmina de vidro de faces paralelas imersa no ar. O índice de refração absoluto do ar vale 1,0 e do vidro vale 2,0.
lâmina de faces paralelas com ângulos de incidência indicados

a) Construa os seguintes gráficos para $\,0\,\leqslant\,i\,\leqslant\,90^o\,$:
(1) $\,sen\;r\,$ em função de $\,sen\;i\,$;
(2) $\,sen\;i'\,$ em função de $\,sen\;i\,$.

b) Responda, justificando, se o raio de luz pode sofrer reflexão total na fronteira vidro-ar.


 



resposta:
×
(FUVEST - 1998) No cubo de aresta 1, considere as arestas $\,\overline{AC}\;$ e $\;\overline{BD}\,$ e o ponto médio, $\,M\,$, de $\,\overline{AC}\;$.
a)
Determine o cosseno do ângulo $\,B\hat{A}D\,$.
b)
Determine o cosseno do ângulo $\,B\hat{M}D\,$.
c)
Qual dos ângulos $\,B\hat{A}D\,$ ou $\,B\hat{M}D\,$ é maior? Justifique.
cubo de aresta 1

 



resposta: a) $\,cosB\hat{A}D\,=\,\frac{\,\sqrt{6\,}\,}{3}\,$
b) $\,cosB\hat{M}D\,=\,\frac{\,7\,}{9}\,$
c) como a função cosseno é decrescente para ângulos agudos, se cos(BÂD) > cos(BMD) decorre que (BÂD) < (BMD)
×
Com os dados da figura, calcular a medida do arco α em graus.
ângulo excêntrico exterior 80 graus

 



resposta:

Todo ângulo inscrito numa circunferência é igual à metade do ângulo central conrrespondente.

esqueminha do ângulo central
esqueminha do ângulo inscrito
ângulo excêntrico exterior com resposta
O ângulo central é a mesma medida em graus do arco de circunferência que ele determina.
Na figura, O ângulo inscrito de vértice M determina o arco α e portanto mede α/2.
O ângulo inscrito com vértice em P determina o arco de 80°, e portanto mede 40°.
O ângulo $\,M\hat{P}K\,$ mede então 180° - 40° = 140°.
A soma dos ângulos internos no triângulo MPK é 180° e portanto:
$\;\dfrac{\;\alpha\;}{\;2\;}\;+\;140\;+\;20\;=\;180\;\Rightarrow$ $\;\dfrac{\;\alpha\;}{\;2\;}\;=\;20\;\Rightarrow$ $\;\alpha\;=\;40^o\;$

A seguir o quadro-resumo das relações entre as posições do ângulos em relação à circunferência e o arcos determinados por estes

Arcos e Ângulos
Vértice
Tipo
Figura
Relações entre as medidas
centro da
circunferência
Ângulo Central
ângulo central
$\;\hat{O}\;=\;\stackrel \frown{AB}\;$
$\;\hat{O}\;=\;\alpha\;$
em um ponto
Ângulo Inscrito
ângulo inscrito
$\;\hat{P}\;=\;\dfrac{\stackrel \frown{AB}}{\;2\;}\;$
 
da circunferência
Ângulo de Segmento
ângulo de segmento
$\;\hat{P}\;=\;\dfrac{\;a\;}{\;2\;}\;$
Interior
Ângulo Excêntrico Interior
ângulo excêntrico interior
$\;\alpha\;=\;\dfrac{\stackrel \frown{AB}\,+\,\stackrel \frown{MN}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;a\,+\,b\;}{\;2\;}\;$
Exterior
Ângulo Excêntrico Exterior
ângulo excêntrico exterior
$\;\alpha\;=\;\dfrac{\stackrel \frown{MN}\,-\,\stackrel \frown{AB}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;b\,-\,a\;}{\;2\;}\;$
Exterior
Ângulo Circunscrito
ângulo circunscrito
$\;\beta\;=\;\dfrac{\;a\,-\,b\;}{2}\;$
ou
$\;\beta\;=\;(180^o\,-\,b)\;$
40°
×
Determinar os ângulos agudos de um triângulo retângulo em que as medidas dos três ângulos formam uma P.A..

 



resposta: 30° e 60°
×
Se r // s , determine $\,\hat{\,\alpha\,}\,$ na figura.
paralelas e transversais com bicos

 



resposta:
Considerações:

Na figura existem ângulos formando "bicos" e nesses bicos não existe nenhuma paralela. A solução inicia-se sempre traçando pelos bicos outras retas paralelas às retas já existentes.

retas paralelas com transversais onde estão marcados os bicos
Resolução:
paralelas cortadas por transversal marcados os alternos internos

Uma vez traçadas as retas paralelas às retas já existentes, podemos marcar os ângulos alternos internos que são congruentes entre si.

Na figura esses ângulos aparecem destacados com cores iguais.
Decorre que a medida de $\;\hat{\,\alpha\,}\;$ é (50° + 40°) = 90°
α = 90°
×
De acordo com a figura, se r // s , então $\,\hat{\,\alpha\,}\,$ vale:
ângulo de 120 graus cortado por paralelas
a)
90°
b)
100°
c)
110°
d)
120°
e)
22°40'

 



resposta: (E)
×
Na figura, r // s então $\;\hat{\;x\;}\;$ vale:
paralelas cortadas pelos lados de um ângulo reto
a)
90°
b)
100°
c)
110°
d)
120°
e)
nenhuma das alternativas anteriores

 



resposta: (B)
×
Na figura, calcular a medida de $\;\hat{\;x\;}\;$ :
duas paralelas cortadas por uma transversal

 



resposta: 41°42'43"
×
A soma dos ângulos internos de um polígono é 2340°. Calcular a quantidade de diagonais desse polígono.

 



resposta:

A soma dos ângulos internos de um polígono é 180° × (n - 2)


Resolução:
Vamos calcular a quantidade de lados no polígono:
SI = 180°(n - 2) = 2340°n - 2 = 13n = 15
Agora vamos substituir o número de lados (n = 15) na fórmula do número de diagonais:
$\phantom{X}d_n\,=\,\dfrac{\;n(n\,-\,3)\;}{2}\phantom{X}$ e então temos que:
$\phantom{X}d_{\text 15\,lados}\,=\,\dfrac{\;15(15\,-\,3)\;}{2}\;\Leftrightarrow\;d_{\text 15\,lados}\,=\,90\phantom{X}$
90 diagonais
×
O valor de um ângulo interno de um polígono regular é 150° . Qual é o polígono?

 



resposta:

Polígono regular possui todos os lados de mesma medida e todos os ângulos de mesma medida.

Resolução:
$\,\left\{\begin{array}{rcr} A_i\;\leftarrow & \\ S_i \; \leftarrow & \\ n \;\leftarrow & \end{array} \right.\,$
medida do ângulo interno
soma das medidas dos ângulos internos
número de lados
Sabemos que soma dos ângulos internos de um polígono é $\boxed{\phantom{X}S_i\;=\;180^o(n\,-\,2)\phantom{X}}$

$\;A_i\,=\,\dfrac{\;S_i\;}{\;n\;}\;=\dfrac{\;180^o(n\,-\,2)\;}{n}\;=\;150^o\;\Longleftrightarrow$ $\;180^o\,\centerdot\,n\,-\,360^o\;=\;150^o\,\centerdot\,n\;\Longrightarrow$ $\;n\,=\,12\;$

O polígono é o Dodecágono (n = 12 lados)
×
Determinar os ângulos de um triângulo sabendo-se que eles estão em P.A. e que a medida do maior ângulo é o quíntuplo da medida do menor ângulo.

 



resposta: 20°, 60° e 80°
×
(FUVEST) Calcule os ângulos de um triângulo retângulo sabendo que eles estão em progressão geométrica.

 



resposta: (em graus) $\dfrac{90(\sqrt{90}\,-\,1)}{89}\; ; \dfrac{90(90 - \sqrt{90})}{89}\;; 90^o\;$
(em radianos) $\,\dfrac{3\pi}{4}\,-\,\dfrac{\pi\sqrt{5}}{4}\; ; \dfrac{\pi (\sqrt{5} - 1)}{4}\;; \dfrac{\pi}{2}\,$
×
Calcule x na figura:
triângulos semelhantes

 



resposta: x = 1
×
Veja exercÍcio sobre:
geometria de posição
paralelismo
perpendicularidade
geometria espacial