Provar que o triângulo cujos vértices são $A(2,2)$, $B(-4,-6)$, e $C(4,-12)$ é um triângulo retângulo.
resposta: Basta verificar que as medidas dos lados estão de acordo com o Teorema de Pitágoras. ×
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$
resposta:
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência: 1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R. 2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício). 3.Então a área de cada triângulo equilátero é base × altura ÷ 2 $\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$ 1. calcular $\;R\;$: $\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$: A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$. O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$): Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$. Pelo Teorema de Pitágoras: $\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
4. Calcular a área lateral da pirâmide: A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm
resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras: $\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$ $\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$ $\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E). Observações: ●É importante verificar nas respostas se a unidade de medida confere: centímetros. ●Para unidades de medida-distância consideramos apenas os valores positivos. ●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.
resposta:
Resolução: $\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I) $\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II) Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III) Substituindo (I) e (II) em (III) temos então: $\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$ $a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$ $\Rightarrow\;$
$a = 15$ $a = 3$ (inadequado porque $\;b\;\neq\;0\;$)
Substituindo $\;a\;=\;15\;$ em (I) e (II) $\;b\;=\;12\;$ $\;c\;=\;9\;$ Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$
Na figura, calcule "$\;x\;$" em função de $\;a\;$.
resposta: Resolução: $\;z^2\; = a^2 + a^2$ $\;y^2\; = z^2 + a^2 \; \Longrightarrow\; y^2 \; = a^2 + a^2 + a^2$ $\;w^2\; = y^2 + a^2\; \; \Longrightarrow\; w^2 = a^2 + a^2 + a^2 + a^2$ $\;x^2\; = w^2 + a^2 \;\Longrightarrow \; x^2 \; = 5 \centerdot a^2$ então Resposta: $\;x\; = \; a \sqrt{5}$ Observe que $\;x\; = a \centerdot \sqrt{n + 1}\;$, sendo $\;n\;$ o número de triângulos retângulos. ×
Na figura, $\;\overline{AD}\;$ é bissetriz interna relativa ao lado $\;\overline{BC}\;$. Calcule a medida do segmento $\;\overline{AD}\;$, sendo $\;AB \;= 6 cm$, $\;AC\; = 10 cm$ e $\;m(A\hat{B}C) = 90^o$.
resposta:
Resolução: Observação: O teorema da bissetriz versa que a reta bissetriz de um dos ângulos do triângulo divide o lado oposto a este ângulo em dois segmentos proporcionais às medidas dos lados adjacentes ao ângulo.
Pelo Teorema de Pitágoras: $(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^{2} \;\Rightarrow $ $\;10^2\;= \;6^2 + (\overline{BC})^2 \; \Rightarrow \;\overline{BC} = \sqrt{64} \;\Longrightarrow \; \overline{BC} = 8$ portanto, na figura $\;a + b\; =\; 8$ Pelo Teorema da Bissetriz Interna, $\frac{6}{a}\; = \;\frac{10}{b}$$\Rightarrow 5a - 3b \;=\;0$ então: $\begin{align} 3a + 3b = 24 \phantom{XXXX} (I) \\ \;5a - 3b =\; 0 \phantom{XXXX}(II) \end{align}$ Somando (I) e (II) $\Longrightarrow 5a + 3a = 24 \Longrightarrow$ $\;a \; = 3\;$ e $\;b\;=\;5$ Usando o teorema de Pitágoras no triângulo retângulo ABD: $\;h^2 = 6^2 + 3^2 \;\;\Rightarrow h^2 \;= 36 + 9 \;\;\Rightarrow h\;=\; 3\sqrt{5} $
Resposta: A medida do segmento $\;\overline{AD}\;$ é $\;3\sqrt{5}\;cm$ ×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é: a) um triângulo retângulo b) um triângulo acutângulo c) um triângulo obtusângulo d) um triângulo equiângulo e) nenhuma das anteriores
Numa sequência de três números naturais (a , b , c) , os termos são chamados de "Números Pitagóricos" se forem tais que c² = a² + b² . Assinale a alternativa onde só existem Números Pitagóricos:
(ENERJ) Entre duas torres de 13 m e 37 m de altura existe na base uma distância de 70 m. Qual a distância entre os extremos sabendo-se que o terreno é plano?
(USP) Na figura, temos a representação de um retângulo inscrito num setor de $\;90^o\;$ e de raio $6m$. Medindo o lado OA do retângulo $\;\frac{2}{3}\;$ do raio, o produto $OA\;\times\;AB\;$ é:
(USP) São conhecidos os seguintes elementos de um triângulo $ABC$: $\;\measuredangle\; CAB = 30^o\;$; $\;AB = 8m\;$;$\;CB = 5m\;$. Pode-se afirmar que:
a) $AC\;=\;(2\sqrt{3}\;-\;3)\;m$ é a única solução. b) $AC\;=\;(2\sqrt{3}\;+\;3)\;m$ é a única solução. c) $AC\;=\;(4\sqrt{3}\;-\;2)\;m\; $ ou $\;AC\;=\;(4\sqrt{2}\;+\;3)\;m\;$ d) $AC\;=\;(2\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(2\sqrt{3}\;+\;3)\;m\;$ e) $AC\;=\;(4\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(4\sqrt{3}\;+\;3)\;m\;$
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.
resposta:
Resolução:
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos: $\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
(FUVEST - 2009) Na figura, estão representados a circunferência C, de centro O e raio 2, e os pontos A, B, P e Q, de tal modo que:
1. O ponto O pertence ao segmento $\,\overline{PQ}\,$. 2. OP = 1 , OQ = $\,\sqrt{2}\,$. 3. A e B são pontos da circunferência. $\;\overline{AP}\; \bot \;\overline{PQ}\phantom{X}$ e $\phantom{X}\overline{BQ}\; \bot\; \overline{PQ}\,$.
Assim sendo, determine:
a)
A área do triângulo APO.
b)
Os comprimentos dos arcos determinados por A e B em C.
(U.F.VIÇOSA - 1990) Na figura abaixo, a circunferência de centro P e raio 2 é tangente a três lados do retângulo ABCD de área igual a 32. A distância do ponto P à diagonal AC vale:
Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica conforme a figura. A abertura das taças é de 4 cm de raio interno, com profundidade de $\,8\sqrt{2}\,$cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
a)
4
b)
3
c)
2
d)
1
e)
5
resposta:
Na figura, a pérola de colar esférica de centro O e raio 1 cm encalhada no fundo da taça com formato de cone — raio da base do cone $\;\overline{AB}\,=\,4\,$cm e altura do cone $\;h \,=\,8\sqrt{2}\,$cm. Foi traçada a altura do cone, o segmento $\;\overline{AC}\;$.
Se a esfera está apoiada sobre a face lateral do cone, então a aresta $\;\overline{BC}\;$ é tangente à esfera no ponto $\;P\;$ e o raio $\;\overline{OP}\;$ é perpendicular a $\;\overline{BC}\;$.
Consideremos o ângulo $\;\alpha\;$ no triângulo $\;ABC\;$ reto em $\;\hat{A}\;$.
$\,(d\,+\,1)^2\,=\,1^2\,+\,(2\sqrt{2})^2\;\Rightarrow\;d\,+\,1\,=\,\sqrt{9}\,$ $\Rightarrow\;d\,=\,3\,-\,1\;\Rightarrow\;\boxed{\,d\,=\,2\,}\,$, que corresponde à
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
resposta:
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que
A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.
$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$ ×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N . a) Achar a distância AB. b) Achar a distância MN.
resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações: Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
Considerações: Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
Resolução:
Consideremos o triângulo NPM reto em P. $\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 .Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°
resposta: a)
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$ b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$ c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4. ×
Qual é a área da secção plana feita numa esfera de raio 1 cm , por um plano distante $\,\frac{\;\sqrt{\,2\,}\;}{6}\,$cm do centro da mesma?
resposta:
Veja a figura onde está representado o raio da secção (r), o raio da esfera (R = 1) e a distância entre a secção e o centro da esfera ($\,\frac{\sqrt{2}}{6}\,$).
Aplicando o teorema de pitágoras: $\,R^2\,=\,r^2\,+\,(\frac{\sqrt{\,2\,}}{6})^2\;\Longrightarrow$ $\,r^2\,=\,1\,-\,(\frac{2}{\,36\,})\;\Longrightarrow$ $\,r^2\,=\,\frac{\,34\,}{\,36\,}\;=\;\frac{\,17\,}{\,18\,}\;$
O raio da secção plana é $\,r\,=\,\sqrt{\,\frac{17}{18}\;}\,$. Como essa secção tem área circular, então:
A secção meridiana de uma esfera de raio R é equivalente a uma secção menor de uma segunda esfera, distante R do centro. Calcular o raio desta segunda esfera em função de R.
resposta:
Quando um plano α secciona uma esfera e não contém o centro da mesma, a secção determinada será um círculo cujo raio é menor do que o raio da esfera. Essa seção é denominada 'círculo menor esfera'.
Considerações:
No desenho, de acordo com o enunciado, a esfera maior apresenta uma secção plana que dista R do centro da esfera. O círculo menor determinado é equivalente ao círculo de raio R que encontramos na secção meridiana da esfera pequena.
Decorre do Teorema de Pitágoras: $\,x^2\,=\,R^2\,+\,R^2\,$ $\,x\,=\,R\sqrt{\,2\,}\,$
Um monumento tem o pedestal em forma de tronco de pirâmide quadrada, onde o apótema tem 6 m e as bases tem lados de 4 m e 2 m. Qual o volume de concreto usado para fazer o pedestal?
resposta:
Conforme a figura, no triângulo hachurado ABC temos:
● o segmento AB é o apótema lateral com medida 6 m, ● o segmento BC é 1 m, igual a metade da diferença entre a medida dos lados da base menor e da base maior e ● e AC é altura do pedestal.
Pelo teorema de Pitágoras:
$\;(AB)^2\,=\,(BC)^2\,+\,(AC)^2\phantom{X}$ $\;(AC)^2\;=\;36\;-\;1\;\Longrightarrow\;\;(AC)\;=\;\sqrt{\;35\;}\phantom{X}$ Portanto a altura do tronco de pirâmide (pedestal) é $\,\sqrt{\,35\,}\,m\,$
$\;A_b\;=\;$ Área da base menor $\;= 2^2 = 4 m^2\;$ $\;A_B\;=\;$ Área da base maior $\;= 4^2 = 16 m^2\;$ $\;V_{tronco}\;=\;\dfrac{\;h\;}{\;3\;}\left({A_b\;+\;\sqrt{\;A_b\;\centerdot\;A_B\;}\;+\;A_B}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left( 4\;+\;\sqrt{\;4\;\centerdot\;16\;}\;+\;16\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;\sqrt{\;64\;}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;8\right)\phantom{X}$