Lista de exercícios do ensino médio para impressão
Provar que o triângulo cujos vértices são $A(2,2)$, $B(-4,-6)$, e $C(4,-12)$ é um triângulo retângulo.

 



resposta: Basta verificar que as medidas dos lados estão de acordo com o Teorema de Pitágoras.
×
Determinar $x$ de modo que o triângulo ABC seja retângulo em B. São dados : $A(4,5)$, $B(1,1)$ e $C(x,4)$.

 



resposta:
×
(PUC - 1970) Sendo $\;A(3,1)\,$, $\;B(4, -4)\;$ e $\;C(-2,2)\,$ vértices de um triângulo, então este triângulo é:
a)
triângulo retângulo e não isósceles
b)
triângulo retângulo e isósceles
c)
triângulo equilátero
d)
triângulo isósceles não retângulo
e)
nenhuma das respostas anteriores

 



resposta: Alternativa D
×
(MACKENZIE - 1979) O triângulo $\,MNP\,$ retângulo em $\,N\,$ e o paralelogramo $\,NPQR\,$ situam-se em planos distintos. Então, a afirmação "MN e QR são segmentos ortogonais":
a)
é sempre verdadeira.
b)
não pode ser analisada por falta de dados.
c)
é verdadeira somente se $\overline{MN} = \overline{QR}$.
d)
nunca é verdadeira.
e)
é verdadeira somente se $\overline{MN} = 2\overline{QR}$.

 



resposta: alternativa A
×
(FUVEST - 1980) São dados cinco pontos não coplanares $A$, $B$, $C$, $D$, $E$ . Sabe-se que $ABCD$ é um retângulo, $AE \perp AB$ e $AE \perp AD$ . Pode concluir que são perpendiculares as retas:

a) $EA$ e $EB$
b) $EC$ e $CA$
c) $EB$ e $BA$
d) $EA$ e $AC$
e) $AC$ e $BE$



 



resposta: Alternativa D
×
(PUC-SP - 1982) Um triângulo isósceles $ABC$, com $AB = BC = 30$ e $AC = 24$, tem o lado $AC$ contido em um plano $\alpha$ e o vértice $B$ a uma distância 18 de $\alpha$. A projeção ortogonal do triângulo $ABC$ sobre o plano $\alpha$ é um triângulo:
a) retângulo.
b) obtusângulo.
c) equilátero.
d) isósceles, mas não equilátero.
e) semelhante ao triângulo $ABC$.

 



resposta: Alternativa C
×
(UCMG - 1982) Na figura ao lado, o ângulo $\phantom{X}A\hat{D}C\phantom{X}$ é reto. O valor, em graus, do ângulo $\phantom{X}C\hat{B}D\phantom{X}$ é de:
a)
95
b)
100
c)
105
d)
110
e)
120
triângulo ADC

 



resposta: Alternativa B
×
(PUC-SP - 1981) Qual é o valor de x na figura ao lado?
a)
$\frac{\sqrt{3}}{3}$
b)
$\frac{5\sqrt{3}}{3}$
c)
$\frac{10\sqrt{3}}{3}$
d)
$\frac{15\sqrt{3}}{4}$
e)
$\frac{20\sqrt{3}}{3}$
triângulo retângulo com ângulos 30 graus e hipotenusa 40

 



resposta: Alternativa E
×
(F.C.M.STA.CASA - 1981) Na figura ao lado temos o triângulo retângulo cujos lados medem 5 cm, 12 cm e 13 cm e a circunferência inscrita nesse triângulo. A área da região sombreada é, em cm² :
a)
$30(1-\pi)$
b)
$5(6-1,25\pi)$
c)
$3(10-3\pi)$
d)
$2(15-8\pi)$
e)
$2(15-2\pi)$
triângulo retângulo com circunferência circunscrita

 



resposta: (E)
×
(F.C.M.STA.CASA - 1980) Na figura ao lado, considere o segmento a = 2 m . A área da superfície sombreada é igual a:
circunferência com área sombreada
a)
$2\pi\;$m²
b)
$4\;$m²
c)
$2\;$m²
d)
$\pi\;$m²
e)
nenhuma das anteriores

 



resposta: (D)
×
(V. UNIF. RS - 1980) Na figura, $\phantom{X}\stackrel \frown{AB} \phantom{X}$ é um arco de uma circunferência de raio 1 . A área do trapézio retângulo $\phantom{X}BCDE\phantom{X}$ é:
plano cartesiano com quadrado e arco
a)
$\dfrac{\sqrt{3}}{24}$
b)
$\dfrac{\sqrt{3}}{18}$
c)
$\dfrac{\sqrt{3}}{12}$
d)
$\dfrac{\sqrt{3}}{6}$
e)
$\dfrac{\sqrt{3}}{4}$

 



resposta: (A)
×
(FUVEST - 1991) O retângulo ABCD representa um terreno retangular cuja largura é 3/5 do comprimento. A parte hachurada representa um jardim retangular cuja largura é também 3/5 do comprimento. Qual a razão entre a área do jardim e a área total do terreno?
a)
30 %
b)
36 %
c)
40 %
d)
45 %
e)
50 %
retângulo ABCD

 



resposta: Alternativa B
×
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
Com os dados das figuras abaixo, determine m .
$\alpha \cong 36^o53'$ $\beta \cong 53^o07'$
triângulos retângulos com ângulos alfa e beta

 



resposta: m = 3,6
×
Com os dados das figuras abaixo, determine h .
$\alpha\,\cong\,36^o53'$
$\beta\,\cong\,53^o07'$
dois triângulos ABH e A'H'C

 



resposta: h = 4,8
×
Com os dados das figuras abaixo, determine n .
triângulo ABC com hipotenusa 10

 



resposta: n = 6,4
×
Com os dados da figura, completar as igualdades dos itens a. até d.
triângulo retângulo com altura
a)
$\;h^2\; = \;m\centerdot\;$ 
b)
$\;c\centerdot h\;= \; $   
c)
$\;c^2 \; = \;m \centerdot \; $  
d)
$\;b^2\;=\;n \centerdot\;$ 

 



resposta: a. $n$ ($h^2 = mn$) b. $bm$ ($c \centerdot h = bm$)
c. $a$ ($c^2 = ma$) d. $a$ ($b^2 = n \centerdot a$)

×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
Na figura abaixo, calcule o valor de $\;x\;$.
figura do triângulo retângulo composto

 



resposta: Resolução:
$AB^2 = 3^2 + 4^2$
$AB^2 = 9 + 16 = 26$
$AB = 5$
então:
$x^2 = 12^2 + AB^2$
$x^2 = 12^2 + 5^2$
$x^2 = 169\; \rightarrow \; x = 13$

Resposta: $x\; =\; 13$

×
Num retângulo de dimensões $\;a\;$ e $\;b\;$,
$\;a\,+\,b\,=\,7\;$ e $\;4a\,-\,3b\,=\,0\;$.
Calcule a diagonal do mesmo.
retângulo de lados a b

 



resposta: Resolução:
$\,\left\{\begin{array}{rcr} a\,+\,b\,=\,7\;& \\ 4a\,-\,3b\,=\,0\;&\\ \end{array} \right.\phantom{XX}$ $\Rightarrow \; a = 3\phantom{X}$ e $\phantom{X}b = 4$

$d^2\,=\,a^2\,+\,b^2\,=\,3^2\,+\,4^2\;$ $\; \Rightarrow \; d = 5$

Resposta: a medida da diagonal é 5.
×
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.

 



resposta:
Resolução:
$\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I)
$\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II)
Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III)
figura do triângulo retângulo clássico
Substituindo (I) e (II) em (III) temos então:
$\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$
$a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$
$\Rightarrow\;$
$a = 15$
$a = 3$ (inadequado porque $\;b\;\neq\;0\;$)

Substituindo $\;a\;=\;15\;$ em (I) e (II)
$\;b\;=\;12\;$
$\;c\;=\;9\;$
Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$

×
Determinar a altura relativa à hipotenusa de um triângulo retângulo cujos catetos valem $\;3\;cm\;\;\;\;$ e $\;\;\;\;4\;cm$.

 



resposta:
Resolução
triângulo retângulo resposta
$\;a^2\;=\;b^2\;+\;c^2\; \Rightarrow \; a^2\;=\;3^2\;+\;4^2\;\Rightarrow\;$
$\;\Rightarrow\;\;a\;=\;5\;$
$\;a\centerdot\;h\;=\;b\centerdot\;c\;$ (relação métrica)$\;\Rightarrow $
$ \Rightarrow \; 5\centerdot h\;=\;3\;\centerdot 4 \; \Rightarrow$
$\;\Rightarrow\;h\;=\;\frac{12}{5}\;cm\; = \; 2,4\;cm$
Resposta: $\,h\,=\,2,4\;cm\,$.
×

Determinar $\;x\;$ na figura abaixo.

figura do trapézio

 



resposta:
Resolução:
$AB = 5 \; \Rightarrow \; DM = 5$
$AD = 4 \;\Rightarrow \; BM = 4$
$DC = 8 \;\; \land \;\; DM = 5 \; \Rightarrow \; MC = 3$
figura do trapézio
Pitágoras: $BM^2 + MC^2 = BC^2 \;$ $\;\Rightarrow \;\;\;4^2 + 3^2 = x^2 \; \Rightarrow \;$ $\;x = 5$
Resposta:
$x = 5$
×
Calcule a diagonal do quadrado de lado $\;a\;$.

 



resposta:
Resolução:
diagonal do quadrado
Pelo Teorema de Pitágoras:
$(\overline{AC})^{\large 2}\;=\;(\overline{AB})^{\large 2}\;+\; (\overline{BC})^{\large 2}\;$
$(\overline{AC})^{\large 2}\;=\;a^{\large 2}\;+\;a^{\large 2}\;=\;2a^{\large 2} \;\Rightarrow \; \overline{AC}\,=\,a\sqrt{2}$
Resposta:
A diagonal de um quadrado de lado medindo $\;a\;$ tem medida igual a $\;a \centerdot \sqrt{2}$.
×
Para um paralelepípedo reto retângulo de dimensões 3 cm , 4 cm e 5 cm , calcular:
a) A área total
b) A medida da diagonal

 



resposta:
a) Resolução:
figura paralelepípedo reto retângulo

área total = $A_t = 2(ab + bc + ac) \;\Rightarrow$
$\Rightarrow A_t = 2(5\centerdot 3 + 3\centerdot 4 + 4 \centerdot 5 )$
Resposta:
$A_t = 94\;cm^2$
b)Resolução
figura diagonal do paralelepípedo reto retângulo

diagonal do paralelepípedo = $D = \sqrt{\;a^2 + b^2 + c^2\;}$
$D = \sqrt{\;5^2 + 4^2 + 3^2\;}$
$ D = \sqrt{\;50\;}$
Resposta:
$D = 5\sqrt{2\,}\,cm$

×
Determinar o volume de um paralelepípedo reto retângulo de dimensões 3 cm, 4 cm e 5 cm.
paralelepípedo

 



resposta:
Resolução:
volume = $V = abc$
$V = 5 \centerdot 3 \centerdot 4 = 60\; cm^3$
Resposta:
O volume é $ V = 60 \;cm^3$

×
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².

 



resposta:
prisma triangular regular

Considerações:

Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo).

$\phantom{XX}\,\left\{\begin{array}{rcr} a_{\large b} \longrightarrow & \\ h\;\longrightarrow\; & \\ A_{\mbox{base}} \longrightarrow & \\ \end{array} \right.\,$
aresta da base
altura do prisma$\; = a_{\large b}\,$
área da base, o triângulo equilátero
Resolução:
1. Sabemos que a área lateral é igual a $\;10 m^2\;$
A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura).
$\;A_{\mbox{lateral}} \;=\; 3 \centerdot a_{\large b} \centerdot h \;\;\Longrightarrow \;\; A_{\mbox{lateral}} \;=\; 3 (a_{\large b}) ^2\;\;$ então $\;\;\left(a_{\large b}\right)^2 \;=\; \dfrac{10}{3}$
2. Área da base:
(área do triângulo equilátero de lado $\;{\large \ell}\;$ em função da medida do lado do triângulo vale $\;\dfrac{\ell^2 \sqrt{3}}{4}\;$)
Então $\;A_{\mbox{base}} \;=\;\dfrac{\left(a_{\large b}\right)^2\sqrt{3}}{4}\;\;\Longrightarrow \;\;A_{\mbox{base}}\;=\dfrac{10}{3}\centerdot\dfrac{\sqrt{3}}{4}\;m^2\;\Longrightarrow$ $\; \;\;A_{\mbox{base}}\;=\dfrac{10\sqrt{3}}{12}\;m^2$
3. Área total:
$A_{\mbox{total}} \;=\;A_{\mbox{lateral}}\,+\,2\centerdot A_{\mbox{base}} \;\;\Longrightarrow \;\;A_{\mbox{total}}\;=\; 10\,+\,2 \centerdot \dfrac{10\sqrt{3}}{12}$
$\;\boxed{\;A_{total}\; = \;10(1 + \dfrac{\sqrt{3}}{6})\;m^2\;}\;$

×
Na figura abaixo, o valor de x é:
a)
5
b)
6
c)
7
d)
8
e)
9
triângulo retângulo de cateto 8 e hipotenusa 10

 



resposta: (B)
×
Na figura, calcule "$\;x\;$" em função de $\;a\;$.
combinação de triângulos retângulos

 



resposta: Resolução:
$\;z^2\; = a^2 + a^2$
$\;y^2\; = z^2 + a^2 \; \Longrightarrow\; y^2 \; = a^2 + a^2 + a^2$
$\;w^2\; = y^2 + a^2\; \; \Longrightarrow\; w^2 = a^2 + a^2 + a^2 + a^2$
$\;x^2\; = w^2 + a^2 \;\Longrightarrow \; x^2 \; = 5 \centerdot a^2$
então
Resposta:
$\;x\; = \; a \sqrt{5}$
Observe que $\;x\; = a \centerdot \sqrt{n + 1}\;$, sendo $\;n\;$ o número de triângulos retângulos.
×
Na figura, $\;\overline{AD}\;$ é bissetriz interna relativa ao lado $\;\overline{BC}\;$. Calcule a medida do segmento $\;\overline{AD}\;$, sendo $\;AB \;= 6 cm$, $\;AC\; = 10 cm$ e $\;m(A\hat{B}C) = 90^o$.

figura do exercício sobre Teorema da Bissetriz Interna

 



resposta:
Resolução:
Observação: O teorema da bissetriz versa que a reta bissetriz de um dos ângulos do triângulo divide o lado oposto a este ângulo em dois segmentos proporcionais às medidas dos lados adjacentes ao ângulo.
triângulo retângulo ABC teoria da bissetriz interna answerm1606221458.png
Pelo Teorema de Pitágoras:
$(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^{2} \;\Rightarrow $
$\;10^2\;= \;6^2 + (\overline{BC})^2 \; \Rightarrow
\;\overline{BC} = \sqrt{64} \;\Longrightarrow \; \overline{BC} = 8$
portanto, na figura $\;a + b\; =\; 8$
Pelo Teorema da Bissetriz Interna,

$\frac{6}{a}\; = \;\frac{10}{b}$$\Rightarrow 5a - 3b \;=\;0$
então:
$\begin{align} 3a + 3b = 24 \phantom{XXXX} (I) \\ \;5a - 3b =\; 0 \phantom{XXXX}(II) \end{align}$
Somando (I) e (II) $\Longrightarrow 5a + 3a = 24 \Longrightarrow$
$\;a \; = 3\;$ e $\;b\;=\;5$
Usando o teorema de Pitágoras no triângulo retângulo ABD:
$\;h^2 = 6^2 + 3^2 \;\;\Rightarrow h^2 \;= 36 + 9 \;\;\Rightarrow h\;=\; 3\sqrt{5} $
Resposta:
A medida do segmento $\;\overline{AD}\;$ é $\;3\sqrt{5}\;cm$
×
A diagonal de um quadrado de lado 4 cm vale:
a)
$\;4\;cm\;$
b)
$\;8\;cm\;$
c)
$\;4\sqrt{2}\;cm\;$
d)
$\;2\sqrt{2}\;cm\;$
e)
$\;1\; cm\;$

 



resposta: C
×
Conforme a figura abaixo, a medida do lado maior $\;x\;$ do retângulo é:
sobre teorema de Pitágoras
a)
5 m
b)
$\sqrt{47}\;$ m
c)
47 m
d)
25 m
e)
12 m

 



resposta: alternativa A
×
Na figura são dadas as medidas de dois lados de um triângulo retângulo. O terceiro lado mede:
a)
3
b)
$\sqrt{41}$
c)
$\sqrt{37}$
d)
4
e)
$\sqrt{34}$
triângulo retângulo de catetos 3 e 5

 



resposta: (E)
×
A medida do segmento $\;x\;$ na figura abaixo, onde $\;b\;$ é conhecido, é dada por:
a)
${\large \frac{2b\sqrt{5}}{5}}$
b)
$b\sqrt{10}$
c)
$b\sqrt{2}$
d)
$2b$
e)
$1$
teorema de pitágoras em série

 



resposta: (A)
×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é:
a) um triângulo retângulo
b) um triângulo acutângulo
c) um triângulo obtusângulo
d) um triângulo equiângulo
e) nenhuma das anteriores

 



resposta: C
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
Numa sequência de três números naturais (a , b , c) , os termos são chamados de "Números Pitagóricos" se forem tais que c² = a² + b² .
Assinale a alternativa onde só existem Números Pitagóricos:
a)
(1 , 1 , 1) ;
(3 , 4 , 5);
(8 , 9 , 12);
(3 , 7 , 10);
(4 , 6 , 8);
b)
(3 , 4 , 5) ;
(5 , 12 , 13) ;
(6 , 8 , 10) ;
(15 , 17 , 21) ;
(7 , 24 , 25) ;
c)
(2 , 3 , 4) ;
(6 , 8 , 10) ;
(16 , 18 , 20) ;
(10 , 20 , 30) ;
(20 , 30 , 50) ;
d)
(8 , 9 , 10) ;
(10 , 12 , 14) ;
(12 , 13 , 20) ;
(10 , 20 , 40) ;
(18 , 22 , 30) ;
e)
N.D.A.

 



resposta: alternativa E
×
(PUC - 1973) Sabendo-se que o triângulo $\phantom{X}ABC\phantom{X}$ é retângulo e $\;\overline{AH}\,=\,h\;$ é a medida da altura do triângulo, quais das relações são válidas:
a)
$x\;=\;b\centerdot c$
b)
$x^2\;=\;h\centerdot c$
c)
$x^2\;=\;b\centerdot d$
d)
$x^2\;=\;b\centerdot c$
e)
nenhuma das anteriores
triângulo retângulo ABC com altura h

 



resposta: (D)
×
(PUC - 1973)
Na figura, sabendo-se que:

$\overline{AE}\;=\;30\;$m , $\;\;\overline{BD}\;=\;40\;$m
$\;\overline{AB}\;=\;50\;$m , $\;\;\overline{EC}\;=\;\overline{CD}$

Então, $\;\overline{AC}\;$ e $\;\overline{CB}\;$ valem, respectivamente:
a)
25 m e 25 m
b)
32 m e 18 m
c)
38 m e 12 m
d)
40 m e 10 m
e)
nenhuma das
anteriores
triângulos retângulos EAC e CBD

 



resposta: alternativa B
×
(PUC - 1973) Na figura abaixo, os segmentos são medidos em $\;m\;$. O segmento $\;x\;$ vale:
a)
11 m
b)
105 m
c)
impossível, pois 43 não tem raiz exata
d)
7 m
e)
nenhuma das anteriores
figura do triângulo retângulo

 



resposta: (D)
×
Determine o valor de $\;x\;$ de acordo com a figura:
figura do exercício

 



resposta: x = 5
×
Determine o valor de x na figura abaixo:
figura do exercicio

 



resposta: $\;x\;=\;5\sqrt{5}\;$
×
Determine a medida do segmento $\phantom{X}{\large x}\phantom{X}$
mostrado na figura:
triângulos

 



resposta: $\;x\;=\;2\sqrt{11}$

×
Determine $\;x\;$ na figura:
figura do exercicio sobre teorema de pitagoras

 



resposta: $\;x\;=\;\sqrt{35}\;$
×
Os lados de um triângulo têm $\;6m,\;9m,\;$ e $\;11m\;$ de comprimento. É triângulo retângulo? Caso seja, que lado é a hipotenusa?

 



resposta: Não é triângulo retângulo: $6^2 + 9^2\;$ < $\; (11)^2\; \Longrightarrow\;117\;$ < $\;121$
×
O lado de um triângulo equilátero é igual à altura de um segundo. Qual a razão de semelhança na ordem dada?

 



resposta: $\;r\;=\;\frac{\sqrt{3}}{2}\;$
×
Determinar a altura de um triângulo equilátero cujo lado mede 1 cm.

 



resposta: $\;h\;=\;\frac{\sqrt{3}}{2}\;cm$
×
Na figura, $ABEF$ é um quadrado de lado $\;5\;m\;$. Determinar a medida de $\;\overline{CD}$.
figura do quadrado de lado 5m

 



resposta: $\;CD\;=\;\frac{5\sqrt{2}}{2} \;m$
×
Na figura, $\;ABCD\;$ é um quadrado de lado $\;1\;cm\;$ e $\;DBE\;$ é um triângulo equilátero. Determinar a medida de $\;\overline{CE}\;$.
imagem quadrado e triângulo


 



resposta: $\;\overline{CE}\;=\;\sqrt{5\,+\,2\sqrt{3}}\;\,cm$
×
Com os dados da figura ao lado,
determine o valor de " x ".
dois triângulos retângulos

 



resposta: x = 12
×
Determine o valor do lado x na figura abaixo.
triângulo

 



resposta: x = 5
×
Determine a medida do lado "x" na figura abaixo.
triângulo duplo

 



resposta: x = 7
×
Na figura abaixo, determinar o valor de "x" .
triângulos cruzados

 



resposta: x = 25
×
Determine a medida do segmento "x" conforme a figura abaixo.

triângulo retângulo


 



resposta: x = 5
×
(ENERJ) Entre duas torres de 13 m e 37 m de altura existe na base uma distância de 70 m. Qual a distância entre os extremos sabendo-se que o terreno é plano?

 



resposta: 74 m
×
(USP) Determinar os lados a, b e c de um triângulo retângulo em A se b + c = 7 dm e h = 2,4 dm.

 



resposta: a = 5 dm; b = 4 dm; c = 3 dm
×
(FEI) O triângulo ABC é equilátero; D e E são os pontos médios de BH e CH. Comparar as áreas $S_1$ do retângulo DHEM com $S_2$ do retângulo DEGF.
a)
são iguais
b)
$S_1$ < $S_2$
c)
$S_1$ > $S_2$
d)
dependem da medida do lado do triângulo e assim pode ser qualquer das anteriores.
e)
$S_1 + S_2 =\dfrac{a^2\sqrt{3}}{16}$
triângulo equilátero ABC

 



resposta: (A)
×
(USP) Na figura, temos a representação de um retângulo inscrito num setor de $\;90^o\;$ e de raio $6m$. Medindo o lado OA do retângulo $\;\frac{2}{3}\;$ do raio, o produto $OA\;\times\;AB\;$ é:
setor 90 graus
a)
$4\sqrt{5}\;m^2$
b)
$8\sqrt{5}\;m^2$
c)
$8\sqrt{13}\;m^2$
d)
$16\;m^2$
e)
$24\;m^2$

 



resposta: (B)
×
(USP) São conhecidos os seguintes elementos de um triângulo $ABC$: $\;\measuredangle\; CAB = 30^o\;$; $\;AB = 8m\;$;$\;CB = 5m\;$. Pode-se afirmar que:

a) $AC\;=\;(2\sqrt{3}\;-\;3)\;m$ é a única solução.
b) $AC\;=\;(2\sqrt{3}\;+\;3)\;m$ é a única solução.
c) $AC\;=\;(4\sqrt{3}\;-\;2)\;m\; $ ou $\;AC\;=\;(4\sqrt{2}\;+\;3)\;m\;$
d) $AC\;=\;(2\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(2\sqrt{3}\;+\;3)\;m\;$
e) $AC\;=\;(4\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(4\sqrt{3}\;+\;3)\;m\;$

 



resposta: alternativa E
×
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por:
a)
$\, \dfrac{2}{3} \pi R^{\large3} \left(\dfrac{m\,-\,1}{m}\right)^{\large 2}\phantom{XXXXXXXX}$
b)
$\, \dfrac{2}{3} \pi R^{\large3} \left(1\,-\,\left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\right)\,$
c)
$\, \dfrac{2}{3} \pi R^{\large3} \left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\;\phantom{XXXXXXX}$
d)
$\,\dfrac{2}{3} \pi R^{\large3} \left(1 \,+\,\left( \dfrac{m\,-\,1}{m}\right)^{\large 2}\right)\,$
e)
nenhuma das alternativas anteriores

 



resposta: Alternativa D
×
Na figura, calcular $\,h\;$ e $\,d\,$.
triângulo retângulo 30 60 graus

 



resposta: Resolução:
$\,\triangle BCD \left\{ \operatorname{tg}60^o \,=\,{\large \frac{h}{d}} \; \Rightarrow \; h\,=\,d\sqrt{3} \right.\,$
$\,\triangle ACD \left\{ \operatorname{tg}30^o \,=\,{\large \frac{h}{d\,+\,40}} \; \Rightarrow \; h\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \right.\,$
Então $\,d\sqrt{3}\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \,\Rightarrow\; d\,=\,20\,m$
e portanto $\;h\,=\,20\sqrt{3}\,m\,$

Resposta: $\; \boxed{ d\,=\,20\,m}\;\;\boxed{h\,=\,20\sqrt{3}\,m}$
×
(GOIÂNIA) Em um triângulo retângulo $\,ABC\,$ os ângulos $\;\hat{B}\text{ e } \hat{C}\;$ são agudos. Se a hipotenusa mede 3 cm. e $\,\operatorname{sen}C\,=\,{\large \frac{\operatorname{sen}B}{2}}\;$, calcule as medidas dos catetos.

 



resposta: $\,\frac{3 \sqrt{5}}{5}\,\text{cm. e }\,\frac{6\sqrt{5}}{5}\,\text{cm.}$

×
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.

 



resposta:
Resolução:
círculo com triângulo ABC inscrito e ângulo central AOB de 90 graus
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
$\,r^2\,+\,r^2\,=\,(4\sqrt{2})^{\large 2}\,$
$\,2\centerdot r^2\,=\,16\centerdot 2\,\Rightarrow\,r\,=\,\sqrt{16}\,$
$\,r\,=\,4\,$
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos:
$\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
medida do raio r = 4
×
(SANTA CASA - 1982) As dimensões de um retângulo são numericamente iguais às coordenadas do vértice da parábola de equação $\;y\,=\,-128x^2\,+\,32x\,+\,6\;$. A área do retângulo é:
a)
1
b)
8
c)
64
d)
128
e)
256

 



resposta: alternativa A
×
(FGV) Sabendo que o $\phantom{X} \triangle ABC\phantom{X}$ é um triângulo retângulo em $\,B\,$, calcular as coordenadas do vértice $\,C\,$.
a)
$\,(\,5\,;\,-2\,)\,$
b)
$\,(\,3{\large \frac{1}{2}}\,;\,-2\,)$
c)
$\,(\,4\,;\,-2\,)\,$
d)
$\,(\,4{\large \frac{1}{2}}\,;\,-2\,)$
e)
nenhuma das anteriores
triângulo ABC reto em B no plano cartesiano

 



resposta: (C)
×
(FUVEST - 2013) O mapa de uma região utiliza a escala de 1:200 000. A porção desse mapa, contendo uma Área de Preservação Permanente (APP), está representada na figura, na qual $\,\overline{AF}\,$ e $\,\overline{DF}\,$ são segmentos de reta, o ponto $\,G\,$ está no segmento $\,\overline{AF}\,$, o ponto $\,E\,$ está no segmento $\,\overline{DF}\,$, $\,ABEG\,$ é um retângulo e $\,BCDE\,$ é um trapézio. Se $\,AF\,=\,15\,$, $\,AG\,=\,12\,$, $\,AB\,=\,6\,$, $\,CD\,=\,3\,$ e $\,DF\,=\,5\sqrt{5}\,$ indicam valores em centímetros no mapa real, então a área da APP é
polígono de 5 lados

Obs: Figura ilustrativa, sem escala.

a)
100 km²
b)
108 km²
c)
210 km²
d)
240 km²
e)
444 km²

 



resposta: (E)
×
Num prisma quadrangular regular, a área lateral mede 32 m² e o volume 24 cm³ . Calcular as suas dimensões.

 



resposta:

Um prisma é chamado quadrangular quando suas bases são quadrados.

Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETO e suas bases são POLÍGONOS REGULARES.

RETO → as arestas laterais são todas perpendiculares aos planos das bases

REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.

A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases.
A área total de um prisma é a soma da área lateral às áreas das bases.
O volume de um prisma é a área da base multiplicada pela altura do prisma.

prisma quadrangular regular indicados lados, bases e arestas
paralelepípedo prisma quadrangular de lado da base a e altura h
Resolução:
Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
Dividindo (II) por (I) temos:
$\;\dfrac{a^{\large 2}h}{ah}\,=\,\dfrac{24}{8}\;\Rightarrow\;\boxed{\,a\,=\,3\,m\,}\;$
Substituindo $\;a\,=\,3\;$ em (I):
$\;3\centerdot h\,=\,8\;\Rightarrow\;\boxed{\,h\,=\,\dfrac{8}{3}\,m\,}\;$
Resposta:As dimensões do prisma são
aresta da base igual a 3 m e altura igual a 8/3 m
×
(FGV - 1976) As peças de um jogo de dominó são pequenos retângulos de madeira, divididos em duas metades. Em cada metade está marcado um certo número de pontos. As peças são feitas de forma que os totais de pontos que aparecem em cada uma das metades são perfeitamente permutáveis girando-se a peça de meia volta. Por exemplo, a peça (2, 5) é também a peça (5, 2). Se em cada metade podem aparecer desde nenhum ponto até n pontos, então o número de peças diferentes é:
a)
$\,\dfrac{n(n\,+\,1)}{2}\,$
b)
$\,\dfrac{n(n\,-\,1)}{2}\,$
c)
$\,(n\,+\,1)!\,$
d)
$\,\dfrac{(n\,+\,1)!}{2}\,$
e)
$\,\dfrac{(n\,+\,2)(n\,+\,1)}{2}\,$

 



resposta: (E)
×
(FUVEST - 2017) O paralelepípedo retorretângulo ABCDEFGH, representado na figura, tem medida dos lados AB = 4, BC = 2 e BF = 2.
O seno do ângulo HÂF é igual a
a)
$\,\dfrac{1}{2\sqrt{5}}\,$
b)
$\,\dfrac{1}{\sqrt{5}}\,$
c)
$\,\dfrac{2}{\sqrt{10}}\,$
d)
$\,\dfrac{2}{\sqrt{5}}\,$
e)
$\,\dfrac{3}{\sqrt{10}}\,$
paralelepípedo ABCDEFGH

 



resposta: Alternativa E
×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
(FUVEST - 2009) A figura representa uma pirâmide ABCDE, cuja base é o retângulo ABCD. Sabe-se que:
${\small \,AB\,=\,CD\,=\,\dfrac{\sqrt{3}}{2}\,}$
${\small \,AD\,=\,BC\,=\,AE\,=\,BE\,=\,CE\,=\,DE\,=\,1\,}$
${\small \,AP\,=\,DQ\,=\,\dfrac{1}{2}\,}$

Nessas condições, determine:
a) A medida de $\,\overline{BP}\,$.
b) A área do trapézio $\,BCQP\,$.
c) O volume da pirâmide $\,BPQCE\,$.
pirâmide

 



resposta:
a)
$\,BP\,=\,\dfrac{\sqrt{10}}{4}\,$ unidades de comprimento
b)
$\,S\,=\,\dfrac{9}{16}\,$ unidades de área
c)
$\,V\,=\,\dfrac{3\sqrt{3}}{64}\,$ unidades de volume

×
(FUVEST - 2015) No triângulo retângulo $\;ABC\;$, ilustrado na figura, a hipotenusa $\,\overline{AC}\,$ mede 12 cm e o cateto $\,\overline{BC}\,$ mede 6 cm. Se $\,M\,$ é o ponto médio de $\,\overline{BC}\,$, então a tangente do ângulo $\,\widehat{MAC}\,$ é igual a:
a)
$\,\dfrac{\sqrt{2}}{7}\,$
b)
$\,\dfrac{\sqrt{3}}{7}\,$
c)
$\,\dfrac{2}{7}\,$
d)
$\,\dfrac{2\sqrt{2}}{7}\,$
e)
$\,\dfrac{2\sqrt{3}}{7}\,$
triângulo retângulo ABC

 



resposta: Alternativa B
×
(U.F.VIÇOSA - 1990) Na figura abaixo, a circunferência de centro P e raio 2 é tangente a três lados do retângulo ABCD de área igual a 32. A distância do ponto P à diagonal AC vale:
a)
$\,2\dfrac{\sqrt{5}}{5}\,$
b)
$\,\dfrac{\sqrt{5}}{2}\,$
c)
$\,\dfrac{\sqrt{5}}{5}\,$
d)
$\,2\sqrt{5}\,$
e)
$\,3\dfrac{\sqrt{5}}{5}\,$
retângulo com círculo interno tangente a 3 lados

 



resposta: Alternativa A
×
(FUVEST - 1977)
Dados:
$\,\overline{MP}\;\bot\;s\,$;$\;\overline{MQ}\;\bot\;t\,$;$\;\overline{MQ}\;\bot\;\overline{PQ}\,$;$\;\overline{MP}\,=\,6$
Então $\,\overline{PQ}\,$ é igual a:
a)
$\,3\sqrt{3}\,$
b)
$\,3\,$
c)
$\,6\sqrt{3}\,$
d)
$\,4\sqrt{3}\,$
e)
$\,2\sqrt{3}\,$
ângulo cujos lados são as semi-retas s e t cortadas pela reta MP perpendicular a s

 



resposta: Alternativa B
×
(MACKENZIE - 1979) No triângulo retângulo ABC da figura, b = 1 e c = 2. Então x vale:
a)
$\,\sqrt{2}\,$
b)
$\,\dfrac{3}{2}\,$
c)
$\,\dfrac{3\sqrt{2}}{2}\,$
d)
$\,\dfrac{2}{3}\,$
e)
$\,\dfrac{2\sqrt{2}}{3}\,$
triângulo ABC reto em A com bissetriz x de A traçada

 



resposta: Alternativa E
×
(FATEC - 1979) Se os catetos de um triângulo retângulo T medem, respectivamente, 12 cm e 5 cm, então a altura de T relativa à hipotenusa é:
a)
$\,\dfrac{12}{5}\,$ cm
b)
$\,\dfrac{5}{13}\,$ cm
c)
$\,\dfrac{12}{13}\,$ cm
d)
$\,\dfrac{25}{13}\,$ cm
e)
$\,\dfrac{60}{13}\,$ cm

 



resposta: Alternativa E
×
(FATEC - 1979) Na figura abaixo, ABFG e BCDE são dois quadrados com lados, respectivamente, de medida a e b. Se $\;\overline{AG}\,=\,\overline{CD}\,+\,2\;\,$ e o perímetro do triângulo ACG é 12, então, simultaneamente, a e b pertencem ao intervalo:
a)
]1; 5[
b)
]0; 4[
c)
]2; 6[
d)
]3; 7[
e)
]4; 8[
dois quadrados com lados de medida respectivas a e b

 



resposta: (B)
×
(FATEC - 1979) Na figura, ABCD é um retângulo. $\,\overline{AB}\,=\,4\,$, $\,\overline{BC}\,=\,1\;$ e $\,\overline{DE}\,=\,\overline{EF}\,=\,\overline{FC}\;$. Então $\,\overline{BG}\,$ é:
a)
$\,\dfrac{\sqrt{5}}{4}\,$
b)
$\,\dfrac{5}{2}\,$
c)
$\,\dfrac{9}{4}\,$
d)
$\,\dfrac{11}{4}\,$
e)
$\,\dfrac{5}{\sqrt{2}}\,$
retângulo ABCD cuja base coincide com a base do triângulo ABG

 



resposta: Alternativa B
×
(PUC SP - 1980) Num triângulo retângulo cujos catetos medem $\,\sqrt{3}\;$ e $\;\sqrt{4}\,$, a hipotenusa mede:
a)
$\,\sqrt{5}\,$
b)
$\,\sqrt{7}\,$
c)
$\,\sqrt{8}\,$
d)
$\,\sqrt{9}\,$
e)
$\,\sqrt{12}\,$

 



resposta: Alternativa B
×
(UF RS - 1984)
O lampião, representado na figura, está suspenso por duas cordas perpendiculares presas ao teto. Sabendo-se que essas cordas medem 1/2 e 6/5 , a distância do lampião ao teto é:
a)
1,69
b)
1,3
c)
0,6
d)
1/2
e)
6/13
lampião pendurado por duas cordas que formam ângulo reto entre si e medem 1/2 e 6/5

 



resposta: Alternativa E
×
(PUC CAMP - 1980) Os lados paralelos de um trapézio retângulo medem 6 cm e 8 cm, e a altura mede 4 cm. A distância entre o ponto de instersecção das retas suporte dos lados não paralelos e o ponto médio da maior base é:
a)
$\,5\sqrt{15}\,$ cm
b)
$\,2\sqrt{19}\,$ cm
c)
$\,3\sqrt{21}\,$ cm
d)
$\,4\sqrt{17}\,$ cm
e)
nenhuma das anteriores
 
 

 



resposta: Alternativa D
×
(UF UBERLÂNDIA - 1980) Num triângulo ABC, o ângulo $\,\hat{A}\,$ é reto. A altura $\,h_A\,$ divide a hipotenusa $\;a\;$ em dois segmentos $\,m\,$ e $\,n\;(m\,> \,n)\,$. Sabendo-se que o cateto $\,b\,$ é o dobro do cateto $\,c\,$, podemos afirmar que $\,\dfrac{m}{n}\,$ é igual a:
a)
4
b)
3
c)
2
d)
7/2
e)
5

 



resposta: Alternativa A
×
Demonstrar que, num paralelepípedo reto retângulo, o quadrado da soma das medidas das arestas é igual à soma do quadrado da diagonal com a área total.

 



resposta: demonstração.
Nesse caso o paralelepípedo é chamado RETO RETÂNGULO:
RETO significa: as arestas laterais são perpendiculares aos planos das bases.

As faces laterais de todo prisma reto são sempre retângulos

.
RETÂNGULO significa: suas bases são retângulos. Poderia ser chamado retangular.

Observação importante: Se você ainda não viu como calcular a diagonal de um paralelepípedo retangular reto veja este exercício sobre diagonal do prisma retangular reto.

prisma reto retangular
Resolução:

Queremos provar que a soma das medidas das arestas elevada ao quadrato é igual ao quadrado da diagonal somado à área total.

diagonal do prisma reto retânguo D
Hipótese:
$\,\left\{\begin{array}{rcr} \mbox{prisma reto retangular} & \\ \mbox{dimensões }\,a,\, b \mbox{ e }c\phantom{XX}\; &\\ \mbox{diagonal }\,D\phantom{XXXXX}\;\, & \\ \mbox{área total }\,A_{\large t}\phantom{XXXXX} & \end{array} \right.\,$
Tese:
$\,\lbrace(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\;$
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I)
2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II)
3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III)
então substituindo em (I) as assertivas (II) e (III) temos que:
$\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $

c.q.d.


×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
Num prisma reto, cada base é um retângulo que tem um lado o dobro do outro, a altura do prisma mede 15 cm e a área total 424 cm² .
Calcular as dimensões da base.

 



resposta:
O enunciado descreve um paralelepípedo reto retângulo com dimensões de (veja figura):
arestas da base x e 2x e
aresta lateral 15 cm .
Resolução:
paralelepípedo reto retângulo

Área Total:ATotal = 2(Abase) + Alateral = 424

Área Total$\;A_T\,=\,2(x\centerdot 2x\,+\,x\centerdot 15\,+\,2x\centerdot \,15)\,=\,424\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,15x\,+\,30x\,=\,212\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,45x\,-\,212\,=\,0\;\Rightarrow\;$
$\,\left\{\begin{array}{rcr} x_1\,=\,4\;\phantom{XXXX}\;& \\ x_2\,\mbox{ raiz negativa }& \end{array} \right.\,$
Resposta:Como as bases medem x e 2x, então as arestas da base são iguais a
4 cm e 8 cm.
×
O triângulo retângulo $\,OAB\,$ gira em torno do cateto $\,OA\,$, determinando um sólido no espaço. O volume gerado pela região $\,OAM\,$ é igual ao gerado pela região $\,OMB\,$. Então a razão $\,\dfrac{AM}{AB}\,$ será:
a)
$\,\dfrac{1}{2}\,$
b)
$\,\dfrac{1}{3}\,$
c)
$\,\sqrt{2}\,$
d)
$\,2\sqrt{2}\,$
e)
$\,\dfrac{\sqrt{2}}{2}\,$
triângulo retângulo OAB com segmento OM

 



resposta:
cone de revolução gerado pelo triângulos AOB
Considerações:

Uma região gerada por um triângulo retângulo girando uma volta completa em torno de um de seus catetos é um cone circular reto chamado de cone de revolução.

Observe atentamente a figura ao lado e verifique que:
1. o triângulo retângulo OAB gira em torno do cateto OA gerando o cone circular representado com superfície verde.
2. o triângulo retângulo OAM interno gira em torno do cateto OA gerando o cone circular interno representado na cor cinza.
A reta que contém o segmento OA é chamada eixo de ambos os cones.
Segundo o enunciado:
1. o volume do cone interno cinza gerado pelo triângulo OAM é o mesmo volume que o cone externo gerado pelo triângulo OAB subtraído o volume interno do cone gerado por OAM. Como na figura, o volume do cone externo verde subtraído o cone interno cinza é igual ao volume do cone interno cinza.
2. o examinador deseja a razão $\;\dfrac{\overline{AM}}{\overline{AB}}\,$, que é a razão do cateto inferior de OAM sobre o cateto inferior de OAB: $\;\rightarrow\,\dfrac{\overline{AM}}{\overline{AB}}\;=\;\dfrac{(a)}{(a\,+\,b)}$
Resolução:
Volume gerado pela região OAM é $\,\dfrac{\pi(a)^{\large 2}\centerdot H}{3}\,=\,\dfrac{\pi H(a)^{\large 2}}{3}\;\;$(I)
Volume gerado pela região OMB é :(volume do cone gerado OAB) subtraído (volume gerado por OAM): $\,\dfrac{\pi(\overline{AB})^{\large 2}\centerdot H}{3}\, - \,\dfrac{\pi(\overline{AM})^{\large 2}\centerdot H}{3}\phantom{X}=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (\overline{AB})^{\large 2}\,-\,(\overline{AM})^{\large 2} \right)\;\;=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)\;\;$(II)
Conforme o enunciado, igualando (I) e (II) temos:
$\,\require{cancel} \cancel{\dfrac{\pi H}{3}}(a)^{\large 2}\, = \,\cancel{\dfrac{\pi H}{3}}\left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)$
$\, (a)^{\large 2}\, = \,(a + b)^{\large 2}\,-\,(a)^{\large 2}$
$\, 2(a)^{\large 2}\, = \,(a + b)^{\large 2}\phantom{X}\Rightarrow\phantom{X}$
dividindo os dois lados da igualdade por $\,2(a\,+\,b)^{\large 2}$
$\dfrac{2(a)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,=\,\dfrac{(a\,+\,b)^{\large 2}}{2(a\,+\,b)^{\large 2}}\,$ $\phantom{X}\Rightarrow\phantom{X}\dfrac{\cancel{2}(a)^{\large 2}}{\cancel{2}(a\,+\,b)^{\large 2}}\,=\,\dfrac{\cancel{(a\,+\,b)^{\large 2}}}{2\cancel{(a\,+\,b)^{\large 2}}}\,$ $\phantom{X}\Rightarrow\phantom{X}\left(\dfrac{a}{a + b}\right)^{\large 2}\,=\,\dfrac{1}{2}\,\phantom{X}\Rightarrow\phantom{X}$
$\,\left\{\begin{array}{rcr} \dfrac{a}{a + b}\,=\,+\sqrt{\dfrac{1}{2}} \;\Rightarrow\;\boxed{\,\dfrac{a}{a + b}\,=\,+\dfrac{\sqrt{2}}{2}\,} & \; \\ \cancel{\,\dfrac{a}{a + b}\,=\,-\sqrt{\dfrac{1}{2}}\,}\mbox{ (valor negativo)} \phantom{XX}\, & \\ \end{array} \right.\,$
Como trata-se de medida de comprimento e/ou distância, valores negativos não são considerados
A razão $\,\dfrac{\overline{AM}}{\overline{AB}}\,$ é igual a $\,\dfrac{\sqrt{2}}{2}\,$ que corresponde à
Alternativa E
×
A geratriz de um cone circular reto mede 10 cm e a altura 8 cm . Determine o raio da base.

 



resposta:
cone indicados geratriz, altura e raio da base

Geratriz do cone é qualquer segmento de reta lateral com uma extremidade no vértice do cone e outra extremidade no perímetro da base do cone.

Como o cone é circular reto, a figura hachurada é um triângulo retângulo onde os catetos são, respectivamente, a altura do cone (8 cm) e o raio da base do cone (r).
A hipotenusa é a geratriz do cone.
$\,G^2\;=\;h^2\;+\;r^2\;\Rightarrow\;$ $\,10^2\,=\,8^2\,+\,r^2\;\Rightarrow\;$ $\,r^2\,=\,100\,-\,64\;\Rightarrow\;$ $r\;=\;6\,cm$
O raio da base mede 6 cm
×
A altura de um cone circular reto é h . A geratriz está inclinada em relação ao plano da base de um ângulo de 60°. Determine o raio da base.

 



resposta:
cone com geratriz formando 60 graus com o plano da base
Observe na figura que (sendo um cone circular reto) a geratriz é a hipotenusa de um triângulo retângulo cujos catetos são a altura e o raio da base.

Considerando-se que a tangente de 60° é igual a $\,\sqrt{\,3\;}\,$ temos:

$\,\operatorname{tg}60^o\,=\,\dfrac{{\text cateto}\;{\text oposto}}{{\text cateto}\;{\text adjacente}}\,=\,\dfrac{\,h\,}{\,r\,}\,\Rightarrow$

$\,\dfrac{\;h\;}{\;r\;}\,=\,\sqrt{\,3\;}\;\Rightarrow\;r\,=\,\dfrac{\;h\;}{\;\sqrt{\,3\;}\;}\,=$ $\,\dfrac{h\sqrt{3}}{3}\,$
O raio da base mede $\,r\,=\,\dfrac{h\sqrt{3}}{3}\,$
×
Sabendo que a área da base de um cone circular reto mede $\;16\pi\,cm^2\;$ e sua geratriz $\;5\,cm\;$, determine a altura do cone.

 



resposta:
cone circular reto com área da base 16 pi cm²
Sendo o cone circular, sua base é um círculo.
Podemos calcular o raio da base:
$\,\require{cancel} S_{\text base}\,=\,\pi\,r^2\,=\,16\,\pi\;\Rightarrow$ $\,r^2\,=\,\dfrac{\,16\,\cancel{\pi}\,}{\cancel{\pi}}\,$
$\,\boxed{\;r = 4\;}\,$
Considerando-se o triângulo retângulo de catetos h e r com hipotenusa 5 cm, temos:
(geratriz)² = (raio)² + (altura)²
$\,4^2\,+\,h^2\,=\,5^2\,\;\Rightarrow$ $\,h^2\,=\,25\,-\,16\;\Rightarrow$ $\,h\,=\,3\,$cm
A altura mede 3 cm
×
(FEI) Um triângulo retângulo de catetos b e c , com b > c , quando gira em torno desses lados gera dois sólidos de volumes Vb e Vc , respectivamente. Determine qual o maior volume, justificando a resposta.

 



resposta: Vb < Vc
×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N .
a) Achar a distância AB.
b) Achar a distância MN.
dois cubos sobrepostos de centros M e N e arestas 1 cm e 2 cm

 



resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações:
Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
vista lateral do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{AB})^{\large 2}\,=\,(1)^{\large 2}\,+\,(3)^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{AB}\,=\,\sqrt{10} \mbox{ cm}\;}$
Considerações:
Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
secção diagonal do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
Consideremos o triângulo NPM reto em P.
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{MN})^{\large 2}\,=\,(\dfrac{\sqrt{2}}{2})^{\large 2}\,+\,(\dfrac{3}{2})^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2} \mbox{ cm}\;}$

×
O volume de um paralelepípedo retângulo é igual a 96 cm³ .Duas de suas dimensões medem 3 cm e 4 cm .Calcular a terceira dimensão.

 



resposta: 8 cm
×
O comprimento da base de um paralelepípedo retângulo é 3 cm maior que a largura. Sendo 22 cm o perímetro da base e 280 cm³ o seu volume, calcular a altura.

 



resposta: 10 cm
×
A soma das arestas de um paralelepípedo reto retângulo é 48 m . Calcular o seu volume, sabendo-se que as dimensões são números inteiros consecutivos.

 



resposta: 60 m³
×
(FUVEST) Aumentando-se os lados a e b de um retângulo em 15% e 20% respectivamente, a área do retângulo é aumentada de:
a)
35%
b)
30%
c)
3,5%
d)
3,8%
e)
38%

 



resposta: (E)
×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Determinar os ângulos agudos de um triângulo retângulo em que as medidas dos três ângulos formam uma P.A..

 



resposta: 30° e 60°
×
(FUVEST) Calcule os ângulos de um triângulo retângulo sabendo que eles estão em progressão geométrica.

 



resposta: (em graus) $\dfrac{90(\sqrt{90}\,-\,1)}{89}\; ; \dfrac{90(90 - \sqrt{90})}{89}\;; 90^o\;$
(em radianos) $\,\dfrac{3\pi}{4}\,-\,\dfrac{\pi\sqrt{5}}{4}\; ; \dfrac{\pi (\sqrt{5} - 1)}{4}\;; \dfrac{\pi}{2}\,$
×
(FUVEST - 2002) Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado lado $\,4\,$ cm e altura $\,20\sqrt{\,3\,}\;$cm , com $\,\frac{\,2\,}{\,3\,}\,$ de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando um ângulo de 30° com o solo. (Veja a seção lateral abaixo). Determinar a altura h do nível da água em relaçao ao solo.
paralelepípedo tombado

 



resposta: h = 21 cm
×