Lista de exercícios do ensino médio para impressão
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.

 



resposta:
Resolução:
circunferência no plano cartesiano
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$.
$\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3.
$\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$.
O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
$\;\dfrac{|3a\,-\,2\sqrt{2}\,+\,5\,+\,2\sqrt{2}\,-\,3a|}{\sqrt{a^2\,+\,1}}\,=\,3 \;\Rightarrow$ $\; \dfrac{5}{a^2\,+\,1}\,=\,3 \;\Rightarrow $ $\; a\;=\;\dfrac{4}{3}$ ou $\;a = -\, \dfrac{4}{3}$.
As equações das tangentes são:
$\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$

×
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.

 



resposta:
Resolução:
círculo com triângulo ABC inscrito e ângulo central AOB de 90 graus
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
$\,r^2\,+\,r^2\,=\,(4\sqrt{2})^{\large 2}\,$
$\,2\centerdot r^2\,=\,16\centerdot 2\,\Rightarrow\,r\,=\,\sqrt{16}\,$
$\,r\,=\,4\,$
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos:
$\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
medida do raio r = 4
×
Determinar a equação da circunferência que tem um diâmetro determinado pelos pontos A (5 , -1) e B (-3 , 7) .

 



resposta:
Resolução:
O segmento $\,\overline{AB}\,$ é um diâmetro da circunferência, então o centro da circunferência é o ponto médio de $\,\overline{AB}\,$:
$\left\{\begin{array}{rcr} A(5\, ,\,-1) \phantom{X}& \\ B(-3\,,\,7) \phantom{X}& \\ \end{array} \right. \;$ $\Rightarrow \;C\,\left( \frac{5 - 3}{2}\,;\,\frac{-1+7}{2} \right)\;\Rightarrow\;C\,(1\,;\,3)$
O raio da circunferência é obtido através da distância AC ou da distância BC.
$\,r\,=\,|AC|\,=$ $\,{\large\,\sqrt{(5\,-\,1)^2\,+\,(-1\,-\,3)^2}}\,=\,\sqrt{32}\,$
A equação da circunferência de raio $\,\sqrt{32}\,$ e centro $\,C\,(1 ; 3)\,$ é:
$\,(x\,-\,1)^2\,+\,(y\,-\,3)^2\,=\,32\;\Rightarrow$ $\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\;}\,$

×
Determinar a equação da circunferência que passa pela origem do sistema cartesiano e cujo centro é o ponto de coordenadas (4 , -3) .

 



resposta:
circunferência no plano cartesiano

Resolução:


O raio da circunferência é a distância do centro até a origem:
$R\,=\,d_{CO}\,=$ $\,{\large\,\sqrt{(x_C\,-\,x_O)^2\,+\,(y_C\,-\,y_O)^2}}$
$R\,=\,{\large\,\sqrt{(4\,-\,0)^2\,+\,(-3\,-\,0)^2}}\;\Rightarrow\;$
$R\,=\,\sqrt{16\,+\,9}\;\Rightarrow\;R\,=\,5$
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\,$
Sabemos que o centro é $\;C\,(4\,,\,-3)\;$ e raio $\,R\,=\,5\,$. Temos então:
$(x\,-\,4)^2\,+\,[y\,-\,(-3)]^2\,=\,(5)^2\;\Rightarrow$ $\;(x\,-\,4)^2\,+\,(y\,+\,3)^2\,=\,5^2\;\Rightarrow$

$\;\boxed{\;x^2\,+\,y^2\,-\,8x\,+\,6y\,=\,0\;}$


×
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.

 



resposta:
Considerações:

A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.

Veja aqui
triângulo ABC circunscrito na circunferência

Resolução:

Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
$\phantom{X}\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OB}\,=\,R \;& \\ \end{array} \right\}\;\Rightarrow\;$ $\;d_{OA}\,=\,d_{OB}\;\Rightarrow \,\sideset{}{_{OA}^2}d\;=\sideset{}{_{OB}^2}d\;\Rightarrow$
1.
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\,$ ${\small (x\,-\,9)^2\,+\,[y\,-\,(-10)]^2\;}\Rightarrow $
${\small x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=$ ${\small \,x^2\,-\,18x\,+\,81\,+\,y^2\,+\,20y\,+\,100\;}\Rightarrow $
${\small 6x\,-\,12y\,+\,18x\,-\,20y}\,=$ $\,{\small 81\,+\,100\,-\,9\,-\,36}\;\Rightarrow $
${\small 24x\,-\,32y\,=\,136}\;\Rightarrow \;$ $\boxed{\;3x\,-\,4y\,=\,17\;}\;\text{(I)}$
2.
$\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OC}\,=\,R \;& \\ \end{array} \right\}\;$ $\;\Rightarrow\;d_{OA}\,=\,d_{OC}\;\Rightarrow \;\sideset{}{_{OA}^2}d\;=\sideset{}{_{OC}^2}d\;\Rightarrow$
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\;$ $\,{\small [x\,-\,(-5)]^2\,+\,(y\,-\,4)^2}\;\Rightarrow $
${\small \, x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=\,$ ${\small \,x^2\,+\,10x\,+\,25\,+\,y^2\,-\,8y\,+\,16}\;\Rightarrow $
${\small \,6x\,-\,12y\,-\,10x\,+\,8y}\,=\,$ ${\small \,25\,+\,16\,-\,9\,-\,36}\;\Rightarrow $
${\small \,-4x\,-\,4y\,=\,-4}\;\Rightarrow\;$ $\; \boxed{\;x\,+\,y\,=\,1\;}\;\text{(II)} $
3.
O próximo passo é resolver o sistema de duas equações (I) e (II):
$\;\left\{\begin{array}{rcr} 3x\,-\,4y\,=\,17 & \\ x\,+\,y\,=\,1\phantom{X} \;& \\ \end{array} \right.\;\Rightarrow\;$ $\;\left\{\begin{array}{rcr} x\,=\,3\;\; & \\ y\,=\,-2& \\ \end{array} \right.\;\Rightarrow\;$ $\; 0\,(3\,,\,-2)\,$
Sabemos então que o centro tem coordenadas (3 , -2) , então vamos calcular a medida do raio:
$\,R\,=\,d_{OA}\,=\,$ $\,\sqrt{[3\,-\,(-3)]^2\,+\,(-2\,-\,6)^2}\;\Rightarrow\;$ $\;R\,=\,10$
Resposta:
$\;\boxed{0\,(3\,,\,-2)\;\text{e}\;R\,=\,10}\,$

×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
(CESGRANRIO - 1985) As circunferências da figura de centros M, N e P, são mutuamente tangentes externamente. A maior tem raio 2 e as outras duas têm raio 1. Então a área do triângulo MNP é:
a)
$\,\sqrt{6}\,$
b)
$\,\dfrac{5}{2}\,$
c)
$\,3\,$
d)
$\,2\sqrt{3}\,$
e)
$\,2\sqrt{2}\,$
três circunferências tangentes externamente mutuamente entre si

 



resposta: Alternativa E
×
(MACKENZIE - 1977) Se a soma das áreas dos três círculos de mesmo raio é $\,3\pi\,$, a área do triângulo equilátero ABC é:
a)
$\,7\sqrt{3}\,+\,12\,$
b)
$\,7\,+\,4\sqrt{3}\,$
c)
$\,19\sqrt{3}\,$
d)
$\,11\sqrt{3}\,$
e)
não sei
triângulo equilátero com 3 circunferências tangentes ao lado da base

 



resposta: Alternativa A
×
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro

 



resposta:
secção meridiana do cilindro

Considerações:

Eixo do cilindro é a reta que passa pelos centros das bases do cilindro.
Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro.
Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases.
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.

A secção meridiana de um cilindro equilátero é um quadrado.

prisma triangular regular com cilindro equilátero inscrito

Resolução:

1. Observando atentamente a figura, temos:
$\;A_{\mbox{base}}\;$
=
área da base do prisma triangular
$\;V_C\;$
=
o volume do cilindro
$\;\rightarrow\;V_C\;=\;\pi\centerdot R^{\large 2}\;=\;\pi\centerdot(3)^{\large 2}$
$\;V_P\;$
=
o volume do prisma triangular
$\;\rightarrow\;V_P\;=\,A_{\mbox{base}}\centerdot h\;=\;A_{\mbox{base}}\centerdot 6\;$
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$.
$\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.

A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita

Perímetro da base
=
$\;p\;=\,(a\,-\,s)\,+\,a\,+\,(a\,+\,s)\;=\;3\centerdot a$
Semiperímetro da base
=
$\;\dfrac{p}{2}\;=\;\dfrac{3\centerdot a}{2}$
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais:
Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Alternativa A
×
Veja exercÍcio sobre:
cilindro
pirâmide
geometria de posição
geometria espacial
volume do cilindro
pirâmide inscrita no cilindro