(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,2)\;$, $\;B=(2,-2)\;$ e $\;C=(4,3)\;$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\;\overline{BC}\;$ é:
(EPUSP - 1968) Se o conjunto dos pontos que satisfazem a equação $\;x^2 + y^2 + 2axy = 0\;$ é a reunião de duas retas, então: a) $a = 0$ b) $0 < |a| <1$ c) $|a|=1$ d) $|a|>1$ e) nenhuma das anteriores
(CESCEM - 1976) O ponto $(a, -b)$ pertence ao interior do 2º quadrante. Os pontos $(-a,b)$ e $(-a,-b)$ pertencem, respectivamente, aos quadrantes: a) 3º e 1º b) 3º e 4º c) 4º e 3º d) 4º e 1º e) 1º e 3º
(E. E. LINS - 1968) Dados os vértices $\;P(1,1)\,$, $\;Q(3,-4)\,$ e $\;R(-5,2)\,$ de um triângulo, o comprimento da mediana que tem extremidade no vértice $\;Q\;$ é:
(CESCEA - 1968) Dado o segmento $\;\overline{AB}\;$ de extremidades $\;A \equiv (-4,1)\;$ e $\;B \equiv (5,7)\;$ as coordenadas do ponto $\;C\;$ que divide na razão $\;\dfrac{\overline{AC}}{\overline{CB}} = 4\;$ são:
(CESCEA - 1972) Uma das diagonais de um quadrado tem extremidades $\;A\,\equiv\,(1,1)\;$ e $\;C\,\equiv\,(3,3)\;$. As coordenadas dos outros dois vértices do quadrado são:
(CESCEA - 1968) Sejam A, B e C números reais quaisquer. Dada a equação $\;Ax + By + C = 0\,$, assinale dentre as afirmações abaixo a correta:
a) se $A \ne 0$ e $B \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem b) se $B \ne 0$ e $C=0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem, não paralela a nenhum dos eixos c) Se $A = 0$ e $C \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta paralela ao eixo $0x$ d) se $A \ne 0$, $B = 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$ e) se $A = 0$, $B \ne 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$
(CESCEA - 1972) A equação da reta que passa pelo ponto $\;A\,\equiv \,(2,\,5)\;$ e que corta a reta de equação $\;y\,=\,-x\,+\,1\;$ num ponto $\;B\;$, tal que $\;AB\,=\,3\sqrt{2}\;$, é:
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,\,2)\,$, $\;B=(2,\,-2)\,$ e $\;C=(4,\,3)\,$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\,\overline{BC}\,$ é:
a) se existir um(a) e um(a) só b) se existirem exatamente dois (duas) distintos(as) c) se existir um número finito porém maior que 2 d) se existirem infinitos(as) e) se não existir nenhum(a) de modo que as afirmações que se seguem fiquem corretas:
1º reta perpendicular a duas retas reversas. 2º plano paralelo a duas retas reversas. 3º dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra. 4º retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p . Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
(FUVEST - 1980) São dados cinco pontos não coplanares $A$, $B$, $C$, $D$, $E$ . Sabe-se que $ABCD$ é um retângulo, $AE \perp AB$ e $AE \perp AD$ . Pode concluir que são perpendiculares as retas:
a) $EA$ e $EB$ b) $EC$ e $CA$ c) $EB$ e $BA$ d) $EA$ e $AC$ e) $AC$ e $BE$
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?
a)
5
b)
10
c)
15
d)
18
e)
24
resposta:
O prisma é chamado pentagonal quando suas bases superior e inferior são pentágonos.
O prisma pentagonal não é necessariamente reto. Significa que num prisma pentagonal as arestas laterais podem ser perpendiculares aos planos das bases (prisma pentagonal reto) ou podem ser oblíquas (prisma pentagonal oblíquo). Nem o pentágono das bases é necessariamente regular. Significa que o polígono da base tem 5 lados (pentágono), mas os lados e ângulos do polígono podem ser diferentes entre si. As bases de um mesmo prisma são sempre congruentes. Resolução:
As diagonais internas de um prisma são segmentos de reta que ligam os vértices da base inferior aos vértices da base superior, excluídas as diagonais das faces e as arestas.
Modo intuitivo: A observação da figura ao lado é importante para desenvolver a capacidade intuitiva de cálculo com polígonos.
Da base inferior do prisma pentagonal são traçados cinco segmentos, cada um com uma extremidade no ponto V , vértice da base, e outra extremidade nos vértices da base superior, que estão numerados 1, 2, 3, 4 e 5.
1. O segmento V-1 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
2. O segmento V-2 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
3. O segmento V-3 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
4. O segmento V-4, traçado em verde, liga um vértice da base inferior a um vértice da base superior mas por ser uma aresta lateral está excluído e NÃO É UMA DIAGONAL DO PRISMA.
5. O segmento V-5 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
Concluímos das afirmações acima e da análise cuidadosa da figura, que de cada vértice de uma base partem apenas dois segmentos que são diagonais do sólido. Como a base tem 5 vértices, $\,5\,\times\,2\,=\,10\,$ e são 10 as diagonais do prisma pentagonal.
(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:
(PUC-RS - 1980) Se "$\;\ell\;$" é a medida da aresta de um tetraedro regular, então sua altura mede:
a)
$\;\dfrac{\ell\sqrt{2}}{3}$
c)
$\;\dfrac{\ell\sqrt{3}}{4}$
b)
$\;\dfrac{\ell\sqrt{3}}{2}$
d)
$\;\dfrac{\ell\sqrt{6}}{3}$
e)
$\;\dfrac{\ell\sqrt{6}}{9}$
resposta:
Resolução:
altura do tetraedro regular:
Na figura, o segmento $\;\overline{MC}\;$ ou apótema "g" na face inferior do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$: $\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$ O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo. A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então: $\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$ $\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$ Assim temos: $\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$ Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
(CESCEM - 1967) Um dado especial em forma de icosaedro, tem suas 20 faces numeradas da seguinte forma: duas das faces têm o número zero; as 18 restantes têm os números$-9, -8, -7, ..., -1, 1, 2, ..., 9$ . A probabilidade de que, lançando dois destes dados, tenhamos uma soma do número de pontos igual a $2$ vale:
(UFMG - 1992) Os pontos $\;A, B, C, D\;$ são colineares e tais que $\;AB = 6$ cm, $\;BC = 2$ cm, $\;AC = 8$ cm e $\;BD = 1$ cm. Nessas condições, uma possível disposição desses pontos é:
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
resposta:
Considerações:
A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.
A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução: O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais. $\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
(ITA - 2004) Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?
(ITA - 2004) Sejam as funções $\;f\;$ e $\;g\;$ definidas em $\;{\rm I\!R}\;$ por $\;f(x) = x^2 + \alpha x\; $ e $\;g(x) = -(x^2 + \beta x)\;$, em que $\alpha$ e $\beta$ são números reais. Considere que estas funções são tais que
$f$
$g$
Valor mínimo
Ponto de mínimo
Valor máximo
Ponto de máximo
$-1$
$< 0$
$\frac{9}{4}$
$> 0$
Então a soma de todos os valores de $\;x\;$ para os quais $\;(f \circ g)(x) = 0\;$ é igual a:
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.
resposta:
Resolução:
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$. $\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3. $\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$. O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
As equações das tangentes são: $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$
Em "Eu era enfim, senhores, uma graça de alienado.", os termos da oração, grifados, são respectivamente, do ponto de vista sintático:
a) adjunto adnominal, vocativo e predicativo do sujeito b) adjunto adverbial, aposto e predicativo do objeto c) adjunto adverbial, vocativo e predicativo do sujeito d) adjunto adverbial, vocativo e objeto direto e) adjunto adnominal, aposto e predicativo do sujeito
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm
resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras: $\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$ $\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$ $\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E). Observações: ●É importante verificar nas respostas se a unidade de medida confere: centímetros. ●Para unidades de medida-distância consideramos apenas os valores positivos. ●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.
(ITA - 2012) As retas $\;r_1\;$ e $\;r_2\;$ são concorrentes no ponto $\;P\;$, exterior a um círculo $\;\omega\;$. A reta $\;r_1\;$ tangencia $\;\omega\;$ no ponto $\;A\;$ e a reta $\;r_2\;$ intercepta $\;\omega\;$ nos ponto $\;B\;$ e $\;C\;$ diametralmente opostos. A medida do arco $\;\stackrel \frown{AC}\;$ é $\;60^o\;$ e $\;\overline{PA}\;$ mede $\;\sqrt{2}\;$ cm. Determine a área do setor menor de $\;\omega\;$ definido pelo arco $\stackrel \frown{AB}\;$.
resposta:
Resolução: De acordo com a figura traçada a partir do enunciado:
1.
o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente).
Então $\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$. $tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$ $ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$
2.
o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$.
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$
Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.
resposta:
Resolução: Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).Resposta:
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.
(FAAP) Na figura, enquanto $\,x\,$ varia de 0 a $\,\beta\,$, os pontos $\;P_1\;$ e $\;P_2\;$ percorrem arcos nas parábolas $\,y\,=\,x^2\,-\,4x \;\;$ e $\;\;-x^2\,+\,16x\;$.
Pede-se:
a)
o valor de $\,\beta\,$
b)
a maior distância entre $\,P_1\,$ e $\,P_2\,$.
resposta: a)$\,\beta\,=\,10\,$b) maior distância : $\,d_{P1-P2} \,=\,50\,$ ×
(MED JUNDIAÍ - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$, definida por $\;f(x)\,=\,-x^2\,+\,ax\,+\,b\;$. Se os pontos (1 ; 3) e (0 ; 1) pertencem ao gráfico de $\,f\;$, um outro ponto do gráfico é:
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.
resposta:
Resolução: Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:Observando a figura acima, podemos concluir:
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$
resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE 2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE 2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 ⇒ x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
(CESCEM) O triângulo $\,ABC\,$ tem vértices $\,A\,(0\,;\,0)\,,\;B\,({\large \frac{3}{5}}\,;{\large\frac{3}{5}})\;$ e $\;C\,({\large -\frac{3}{5}};{\large \frac{3}{5}})\;$. A equação da reta que passa por $\;A\;$ e pelo ponto médio de $\,\overline{BC}\;$ é:
Os vértices de um triângulo são os pontos A (-1 ; 0), B (0 ; 3) e C (2 ; 4) . Determinar os coeficientes angulares e lineares das três retas suportes dos lados.
resposta: $\,m_{AB}\,=\,3\,$ e $\,h_{AB}\,=\,3\,$; $\,m_{BC}\,=\,{\large \frac{1}{2}}\,$ e $\,h_{BC}\,=\,3\,$; $\,m_{AC}\,=\,{\large \frac{4}{3}}\,$ e $\,h_{AC}\,=\,{\large \frac{4}{3}}\,\,$;
(CESCEM) Considere o triângulo $\phantom{X} V_1\;(0\,,\,0),\;V_2\;(a\,,\,a)\;$ e $\;V_3\;(a\,,\,-a) . \phantom{X}$ A equação da reta que passa pelo vértice $\,V_3\,$ e pelo ponto médio do lado $\,V_1V_2\,$ é:
a)
$\,y\,=\,-\,\dfrac{1}{3} \centerdot x \,+\,\dfrac{29}{3}\,$
Determinar a equação reduzida das retas que passam pelos seguintes pares de pontos: a) A (0 ; 3) e B (-1 ; 0) b) C (1 ; -2) e D (-3 ; 4) c) E (3 ; 4) e F (-4 ; -3)
resposta: a) y = 3x + 3 b) $\,y\,=\,-{\large \frac{3}{2}}x - {\large \frac{1}{2}}\,$ c) y = x + 1
(CESCEM) Uma reta pela origem de coeficiente angular negativo tem somente 3 pontos em comum com o gráfico da função $\phantom{X} y\,=\,\operatorname{sen}x\phantom{X}$. A menor das 3 correspondentes abscissas:
Determinar o ponto no eixo 0x equidistante dos pontos A (6 , 5) e B (-2 , 3) .
resposta: Resolução: O ponto P equidistante de A e B está no eixo x , portanto sua ordenada é nula e podemos representar P (x , 0) . Da equidistãncia:
$\;\begin{array}{rcr} \text{distância}_{PA} = \text{distância}_{PB} \phantom{XXXXXX} & \\ \sqrt{(x\,-\,6)^2\,+\,(0\,-\,5)^2}\,=\,\sqrt{(x\,+\,2)^2\,+\,(0\,-\,3)^2}& \\ \end{array} $
Elevar os lados ao quadrado: $\,x^2\,-\,12x\,+\,36\,+\,15\,=\,x^2\,+\,4x\,+\,4\,+\,9\,$ desenvolvendo a equação temos $\,\boxed{x\,=\,3}\,$. Se x = 3 então P(x,0) é o ponto P(3;0) Resposta: $\;\boxed{\;(3\,;\,0)\;}$
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.
resposta:
Considerações:
A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.
Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
(SANTA CASA) O triângulo ABC é tal que A é a origem do sistema de coordenadas, B e C estão no 1º quadrante e AB = BC . A reta s , que contém a altura do triângulo traçada por B , intercepta $\,\overline{AC}\,$ no ponto M . Sendo M (2 ; 1) e C (x ; y) , então x + y é igual a:
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
(USP) Dados os pontos A (1 ; -4) , B (1 ; 6) e C (5 ; 4 ) e sabendo-se que $\;AB^2\;=\;BC^2\,+\,AC^2\;$, então, a soma das coordenadas do centro da circunferência que passa pelos pontos A , B e C é:
Uma bala animada de movimento retilíneo e com velocidade por hipótese constante, igual a 250 m/s , atinge um alvo; o ruído produzido pelo impacto é ouvido no ponto em que a bala foi disparada 1,2 s após o disparo. Determinar a distância do alvo ao ponto de que foi disparado o projétil. Velocidade do som: 340 m/s .
(ITA - 1979) Considere o triângulo ABC , onde AD é a mediana relativa do lado BC . Por um ponto arbitrário M dosegmento BD , tracemos o segmento MP paraleloa AD ,onde P é o ponto de intersecção desta paralela com o prolongamento do lado AC .Se N é o ponto de intersecção de AB com MP , podemos afirmar que:
a)
MN + MP = 2BM
b)
MN + MP = 2CM
c)
MN + MP = 2AB
d)
MN + MP = 2AD
e)
MN + MP = 2AC
resposta:
Resolução:
1.$\;\overline{MN}\;$ é paralelo a $\;\overline{AD}\;$ e $\;\overline{AD}\;$ é paralelo a $\;\overline{MP}\;$ $MN // AD\;\Rightarrow\;$ $\;\triangle BMN\thicksim\triangle BDA\;\Rightarrow\;\dfrac{MN}{DA}\,=\,\dfrac{BM}{BD}\;\Rightarrow\;$ $\;MN\,=\,DA\centerdot\, \dfrac{BM}{BD}\phantom{X}$(I)
(ITA - 1990) Seja $\;C\;$ o centro da circunferência $\;x^2\,+\,y^2\,-\,6\sqrt{2}y\,=\,0\;$. Considere $\,A\,$ e $\,B\,$ os pontos de intersecção desta circunferência com a reta $\,y\,=\,\sqrt{2}x\,$. Nestas condições o perímetro do triângulo de vértices $\,A\,$, $\,B\,$ e $\,C\,$ é:
(FGV) As cordas $\,\overline{AB}\,$ e $\,\overline{CD}\,$ de uma circunferência de centro $\,O\,$ são, respectivamente, lados de polígonos regulares de 6 e 10 lados inscritos nessa circunferência. Na mesma circunferência, as cordas $\,\overline{AD}\,$ e $\,\overline{BC}\,$ se intersectam no ponto $\,P\,$, conforme indica a figura a seguir:
A medida do ângulo $\,B\hat{P}D\,$, indicado na figura por $\,\alpha\,$, é igual a:
(UNESP) Em um plano horizontal encontram-se representadas uma circunferência e as cordas $\,AC\,$ e $\,BD\,$. Nas condições apresentadas na figura, determine o valor de $\,x\,$.
(FUVEST - 2013) O mapa de uma região utiliza a escala de 1:200 000. A porção desse mapa, contendo uma Área de Preservação Permanente (APP), está representada na figura, na qual $\,\overline{AF}\,$ e $\,\overline{DF}\,$ são segmentos de reta, o ponto $\,G\,$ está no segmento $\,\overline{AF}\,$, o ponto $\,E\,$ está no segmento $\,\overline{DF}\,$, $\,ABEG\,$ é um retângulo e $\,BCDE\,$ é um trapézio. Se $\,AF\,=\,15\,$, $\,AG\,=\,12\,$, $\,AB\,=\,6\,$, $\,CD\,=\,3\,$ e $\,DF\,=\,5\sqrt{5}\,$ indicam valores em centímetros no mapa real, então a área da APP é
(FUVEST - 2015) A equação $\phantom{X}x^2\,+\,2x\,+\,y^2\,+\,my\,=\,n\phantom{X}$, em que $\,m\,$ e $\,n\,$ são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta $\phantom{X}y\,=\,-x\,+\,1\phantom{X}$ contém o centro da circunferência e a intersecta no ponto $\,(-3,\,4)\,$. Os valores de $\,m\,$ e $\,n\,$ são, respectivamente
As letras do código MORSE são formadas por sequências de traços (—) e pontos (●), sendo permitidas repetições. Por exemplo (—;●;—;●;●). Quantas letras podem ser representadas:
(FGV - 1976) As peças de um jogo de dominó são pequenos retângulos de madeira, divididos em duas metades. Em cada metade está marcado um certo número de pontos. As peças são feitas de forma que os totais de pontos que aparecem em cada uma das metades são perfeitamente permutáveis girando-se a peça de meia volta. Por exemplo, a peça (2, 5) é também a peça (5, 2). Se em cada metade podem aparecer desde nenhum ponto até n pontos, então o número de peças diferentes é:
(ITA - 1990) Considere a reta $\,r\,$ mediatriz do segmento cujos extremos são os pontos em que a reta $\,2x\,-3y\,+7\,=\,0\,$ intercepta os eixos coordenados. Então a distancia do ponto $\,\left(\,\dfrac{1}{4},\,\dfrac{1}{6}\right)\,$ à reta $\,r\,$ é: