Lista de exercícios do ensino médio para impressão
Calcular a distância entre os pontos A ( 1 ; 3 ) e B ( -1 ; 4 ) .

 



resposta:
×
Calcular a distância do ponto $\;P(-6,8)\;$ à origem do sistema cartesiano.

 



resposta:
×
Calcular a distância entre os pontos $\,A(a\,-\,3;\;b\,+\,4)\;$ e $\;B(a\,+\,2,\;b\,-\,8)$.

 



resposta:
×
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,2)\;$, $\;B=(2,-2)\;$ e $\;C=(4,3)\;$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\;\overline{BC}\;$ é:
a)
$3x + 4y = 11$
b)
$4x + \dfrac{7}{2}y = 11$
c)
$x + 3y = 7$
d)
$3x + 2y = 7$
e)
$x + 2y = 5$

 



resposta: Alternativa A
×
Calcular o perímetro do triângulo ABC, sendo dados $A(2,1)$, $B(-1,3)$, e $C(4,-2)$.

 



resposta:
×
Provar que o triângulo cujos vértices são $A(2,2)$, $B(-4,-6)$, e $C(4,-12)$ é um triângulo retângulo.

 



resposta: Basta verificar que as medidas dos lados estão de acordo com o Teorema de Pitágoras.
×
Determinar $x$ de modo que o triângulo ABC seja retângulo em B. São dados : $A(4,5)$, $B(1,1)$ e $C(x,4)$.

 



resposta:
×
(EPUSP - 1968) Se o conjunto dos pontos que satisfazem a equação $\;x^2 + y^2 + 2axy = 0\;$ é a reunião de duas retas, então:
a) $a = 0$
b) $0 < |a| <1$
c) $|a|=1$
d) $|a|>1$
e) nenhuma das anteriores

 



resposta: (D)
×
(EPUSP - 1966) Os pontos do plano $\;xy\;$ cujas coordenadas satisfazem à equação $\;sen(x-y) = 0\;$ constituem:
a)
uma reta
b)
um senóide
c)
uma elipse
d)
um feixe de retas paralelas
e)
nenhuma das anteriores

 



resposta: Alternativa D
×
(MACKENZIE - 1973) A representação gráfica do conjunto de pontos $\;(x\,,\,y)\;$ tais que $\;x\,-\,2\,-\,\sqrt{4\,-\,y^2}\,\geqslant\,0\;$ é:
a)
gráfico cartesiano sol nascente
b)
gráfico cartesiano meia circunferência
c)
gráfico cartesiano um quarto de circunferência
d)
gráfico cartesiano circunferência de raio 4
e)
quarto de circunferência no plano cartesiano

 



resposta: (B)
×
(CESCEM - 1976) O ponto $(a, -b)$ pertence ao interior do 2º quadrante. Os pontos $(-a,b)$ e $(-a,-b)$ pertencem, respectivamente, aos quadrantes:
a) 3º e 1º
b) 3º e 4º
c) 4º e 3º
d) 4º e 1º
e) 1º e 3º

 



resposta: Alternativa D
×
(FFCLUSP - 1966) A distância do ponto $\;(-2,3)\;$ ao eixo das ordenadas é:
a)
$-2$
b)
$2$
c)
$1$
d)
$5$
e)
$\sqrt{13}$

 



resposta: Alternativa B
×
(CESCEA - 1974) O ponto do eixo $x$ equidistante de $\,(0, -1)\;$ e $\;(4,3)\,$ é:
a)
$(-1,0)$
b)
$(1,0)$
c)
$(2,0)$
d)
$(3,0)$
e)
não sei

 



resposta: Alternativa D
×
(PUC - 1970) Sendo $\;A(3,1)\,$, $\;B(4, -4)\;$ e $\;C(-2,2)\,$ vértices de um triângulo, então este triângulo é:
a)
triângulo retângulo e não isósceles
b)
triângulo retângulo e isósceles
c)
triângulo equilátero
d)
triângulo isósceles não retângulo
e)
nenhuma das respostas anteriores

 



resposta: Alternativa D
×
Localizar e rotular no plano cartesiano os pontos A (0 , -3) , B (3 , -4) , C (5 , 6) , D (-2 , -5) e E (-3 , 5) .
plano cartesiano quadriculado

 



resposta: resposta plano cartesiano com pontos
×
(E. E. LINS - 1968) Dados os vértices $\;P(1,1)\,$, $\;Q(3,-4)\,$ e $\;R(-5,2)\,$ de um triângulo, o comprimento da mediana que tem extremidade no vértice $\;Q\;$ é:
a)
$12$
b)
$10$
c)
$15$
d)
$\dfrac{\sqrt{221}}{2}$
e)
nenhuma das respostas anteriores

 



resposta: Alternativa D
×
(CESCEA - 1968) Dado o segmento $\;\overline{AB}\;$ de extremidades $\;A \equiv (-4,1)\;$ e $\;B \equiv (5,7)\;$ as coordenadas do ponto $\;C\;$ que divide na razão $\;\dfrac{\overline{AC}}{\overline{CB}} = 4\;$ são:
a)
$\;(-\dfrac{11}{5},\dfrac{12}{5})\;$
b)
$\;(\dfrac{16}{5},\dfrac{29}{5})\;$
c)
$\;(1,8)\;$
d)
$\;(\dfrac{1}{2},4)\;$
e)
$\;(9,6)\;$

 



resposta: Alternativa B
×
(EPUSP - 1966) Seja C o ponto de encontro das medianas do triângulo OAB de ângulo reto A . Sendo O = (0 , 0) e A = (3 , 0) , a abscissa de C :
a)
é inferior a 1
b)
é 1
c)
é 1,5
d)
só pode ser conhecida se for dada a ordenada de B
e)
nenhuma das respostas anteriores

 



resposta: alternativa E
×
(CESCEA - 1972) Uma das diagonais de um quadrado tem extremidades $\;A\,\equiv\,(1,1)\;$ e $\;C\,\equiv\,(3,3)\;$. As coordenadas dos outros dois vértices do quadrado são:
a)
(2,3) e (3,2)
b)
(3,1) e (1,3)
c)
(3,0) e (1,4)
d)
(5,2) e (4,1)
e)
não sei

 



resposta: Alternativa B
×
(MACKENZIE - 1976) Se os pontos $\;(2\,,\,-3)\;$, $(4\,,\,3)\;$ e $\;(5\,,\, \dfrac{k}{2})\;$ estão numa mesma reta, então $\;k\;$ é igual a:
a)
-12
b)
-6
c)
6
d)
12
e)
18

 



resposta: Alternativa D
×
(CESCEA - 1968) Sejam A, B e C números reais quaisquer. Dada a equação $\;Ax + By + C = 0\,$, assinale dentre as afirmações abaixo a correta:

a) se $A \ne 0$ e $B \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem
b) se $B \ne 0$ e $C=0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem, não paralela a nenhum dos eixos
c) Se $A = 0$ e $C \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta paralela ao eixo $0x$
d) se $A \ne 0$, $B = 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$
e) se $A = 0$, $B \ne 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$


 



resposta: alternativa D
×
(EPUSP - 1967) O ponto $P(3,m)$ é interno a um dos lados do triângulo $A(1,2)$, $B(3,1)$ e $C(5,-4)$. Então:
a)
m = -1
b)
m = 0
c)
m = $\dfrac{1}{2}$
d)
m = 1
e)  nenhuma das respostas anteriores


 



resposta: Alternativa A
×
(FEI - 1967) Para cada número real $\;m\;$, considere-se a reta $\;r(m)\;$ de equação $\;mx + y - 2 = 0\;$.
a)
existem $\;m_1\;$ e $\;m_2\;$, com $\;m_1 \ne m_2\;$, tais que $\;r(m_1)\;$ e $\;r(m_2)\;$ são paralelas
b)
existe um valor de $\;m\;$ para o qual a reta $\;r(m)\;$ é paralela ao eixo dos $\;y\;$
c)
qualquer que seja $\;m\;$, a reta $\;r(m)\;$ passa pelo ponto $\;(2,-1)\;$
d)
qualquer que seja $\;m\;$, a reta $\;r(m)\;$ passa pelo ponto $\;(0,2)\;$
e)
nenhuma das afirmações é verdadeira

 



resposta: alternativa D
×
(CESCEA - 1973) A reta que passa pelo ponto $P = (2,3)$ e pelo ponto $Q$, simétrico de $P$ em relação à origem, é:
a)
$2y = 3x$
b)
$y = 3x - 3$
d)
$y = 4x - 1$
c)
$y = 2x - 1$
e)
nenhuma das anteriores

 



resposta: Alternativa A
×
(CESCEA - 1972) A equação da reta que passa pelo ponto $\;A\,\equiv \,(2,\,5)\;$ e que corta a reta de equação $\;y\,=\,-x\,+\,1\;$ num ponto $\;B\;$, tal que $\;AB\,=\,3\sqrt{2}\;$, é:
a)
$y = x + 3$
b)
$y - 5 = -(x-2)$
c)
$y - 5 = (3x - 2)$
d)
$y = 2x + 1$
e)
nenhuma das anteriores

 



resposta: (A)
×
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,\,2)\,$, $\;B=(2,\,-2)\,$ e $\;C=(4,\,3)\,$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\,\overline{BC}\,$ é:
a)
$3x + 4y = 11$
b)
$4x + \dfrac{7}{2}y = 11$
d)
$3x + 2y = 7$
c)
$x + 3y = 7$
e)
$x + 2y = 5$

 



resposta: alternativa A
×
(CESCEM - 70) Do enunciado abaixo:

"A condição necessária e suficiente para que uma reta seja paralela a um plano que não a contém é que ela seja paralela a uma reta desse plano."

Podemos concluir que:
a)
A condição ser suficiente significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
b)
A condição ser necessária significa que: toda reta paralela a uma reta de um plano é paralela a este plano.
c)
A condição ser suficiente significa que: todo plano paralelo a uma reta conterá todas as retas paralelas à reta dada.
d)
A condição ser necessária significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
e)
Nenhuma das anteriores.

 



resposta: Alternativa E
×
(MACKENZIE - 1973) Marque uma das alternativas:

a) se existir um(a) e um(a) só
b) se existirem exatamente dois (duas) distintos(as)
c) se existir um número finito porém maior que 2
d) se existirem infinitos(as)
e) se não existir nenhum(a)
de modo que as afirmações que se seguem fiquem corretas:

reta perpendicular a duas retas reversas.
plano paralelo a duas retas reversas.
dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra.
retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.

 



resposta: 1a - 2d - 3e - 4b
×
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p .
Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
e)
nenhuma das respostas anteriores.

 



resposta: alternativa C
×
(FUVEST - 1980) São dados cinco pontos não coplanares $A$, $B$, $C$, $D$, $E$ . Sabe-se que $ABCD$ é um retângulo, $AE \perp AB$ e $AE \perp AD$ . Pode concluir que são perpendiculares as retas:

a) $EA$ e $EB$
b) $EC$ e $CA$
c) $EB$ e $BA$
d) $EA$ e $AC$
e) $AC$ e $BE$



 



resposta: Alternativa D
×
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
a)
$k = {\dfrac{11}{3}}$
b)
$k = {\dfrac{15}{4}}$
c)
$k = 2$
d)
$k ={\dfrac{1}{2}}$
e)
nenhuma das respostas anteriores
circunferência no plano cartesiano

 



resposta: alternativa B
×
(FUVEST - 1982) Sejam $r$ e $s$ duas retas distintas. Podemos afirmar que sempre:
a)
existe uma reta perpendicular a $\;r\;$ e a $\;s\;$.
b)
$\;r\;$ e $\;s\;$ determinam um único plano.
c)
existe um plano que contém $\;s\;$ e não intercepta $\;r\;$.
d)
existe uma reta que é paralela a $\;r\;$ e a $\;s\;$.
e)
existe um plano que contém $\;r\;$ e um único ponto de $\;s\;$.

 



resposta: Alternativa A
×
(UBERLÂNDIA - 1982) Das alternativas abaixo:
   I -
Dois planos distintos perpendiculares a um terceiro são paralelos entre si.
  II -
Se dois planos são perpendiculares, então toda reta de um forma um ângulo reto com qualquer reta do outro.
 III -
Distância entre duas retas é a distância entre um ponto qualquer de uma e a outra.
 IV -
Se três retas são, duas a duas, reversas e não paralelas a um mesmo plano, então por qualquer ponto de uma passa reta que se apoia nas outras duas.
Pode-se afirmar que:
a)
todas as alternativas são verdadeiras.
b)
todas as alternativas são falsas.
c)
apenas a alternativa I é falsa.
d)
apenas a alternativa I é verdadeira.
e)
apenas as alternativas I, II e III são verdadeiras.

 



resposta: Alternativa B
×
(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?
a)
5
b)
10
c)
15
d)
18
e)
24

 



resposta:

O prisma é chamado pentagonal quando suas bases superior e inferior são pentágonos.

O prisma pentagonal não é necessariamente reto. Significa que num prisma pentagonal as arestas laterais podem ser perpendiculares aos planos das bases (prisma pentagonal reto) ou podem ser oblíquas (prisma pentagonal oblíquo).
Nem o pentágono das bases é necessariamente regular. Significa que o polígono da base tem 5 lados (pentágono), mas os lados e ângulos do polígono podem ser diferentes entre si.
As bases de um mesmo prisma são sempre congruentes.
Resolução:
diagonais num prisma pentagonal
As diagonais internas de um prisma são segmentos de reta que ligam os vértices da base inferior aos vértices da base superior, excluídas as diagonais das faces e as arestas.

Modo intuitivo:
A observação da figura ao lado é importante para desenvolver a capacidade intuitiva de cálculo com polígonos.
Da base inferior do prisma pentagonal são traçados cinco segmentos, cada um com uma extremidade no ponto V , vértice da base, e outra extremidade nos vértices da base superior, que estão numerados 1, 2, 3, 4 e 5.
1. O segmento V-1 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
2. O segmento V-2 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
3. O segmento V-3 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
4. O segmento V-4, traçado em verde, liga um vértice da base inferior a um vértice da base superior mas por ser uma aresta lateral está excluído e NÃO É UMA DIAGONAL DO PRISMA.
5. O segmento V-5 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
Concluímos das afirmações acima e da análise cuidadosa da figura, que de cada vértice de uma base partem apenas dois segmentos que são diagonais do sólido. Como a base tem 5 vértices, $\,5\,\times\,2\,=\,10\,$ e são 10 as diagonais do prisma pentagonal.
Resposta:
Alternativa B
×
(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:
a)
6 unidades.
b)
5 unidades.
c)
4 unidades.
d)
3 unidades.
e)
2 unidades.

 



resposta: Alternativa E
×
(PUC-RS - 1980) Se "$\;\ell\;$" é a medida da aresta de um tetraedro regular, então sua altura mede:
a)
$\;\dfrac{\ell\sqrt{2}}{3}$
c)
$\;\dfrac{\ell\sqrt{3}}{4}$
b)
$\;\dfrac{\ell\sqrt{3}}{2}$
d)
$\;\dfrac{\ell\sqrt{6}}{3}$
e)
$\;\dfrac{\ell\sqrt{6}}{9}$

 



resposta:
Resolução:

altura do tetraedro regular:

altura do tetraedro regular
Na figura, o segmento $\;\overline{MC}\;$ ou apótema "g" na face inferior do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$:
$\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$
O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo.
A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então:
$\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$
$\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$
Assim temos:
$\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$
Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
resposta:
Alternativa D
×
(CESCEM - 1967) Um dado especial em forma de icosaedro, tem suas 20 faces numeradas da seguinte forma: duas das faces têm o número zero; as 18 restantes têm os números$-9, -8, -7, ..., -1, 1, 2, ..., 9$ . A probabilidade de que, lançando dois destes dados, tenhamos uma soma do número de pontos igual a $2$ vale:
a)
$\dfrac{9}{400}$
b)
$\dfrac{18}{400}$
c)
$\dfrac{10}{400}$
d)
$\dfrac{19}{400}$
e)
$\dfrac{2}{20}$

 



resposta: (D)
×
(UFMG - 1992) Os pontos $\;A, B, C, D\;$ são colineares e tais que $\;AB = 6$ cm, $\;BC = 2$ cm, $\;AC = 8$ cm e $\;BD = 1$ cm. Nessas condições, uma possível disposição desses pontos é:
a)
$ADBC$
d)
$BACD$
b)
$ABCD$
e)
$BCDA$
c)
$ACBD$

 



resposta: Alternativa A
×
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
gangorra

 



resposta:
gangorra da vunesp

Considerações:

A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.

A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução:
O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais.
$\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
$\;\dfrac{1,2\, +\, 1,8}{1,8}\,=\,\dfrac{H}{\frac{\sqrt{3}}{2}}\;\Rightarrow\;$ $\;H\,=\,\dfrac{\sqrt{3}}{2}\centerdot\dfrac{30}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{\sqrt{3}}{1}\centerdot\dfrac{15}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{5\sqrt{3}}{6}\;\Rightarrow\;$ corresponde à
Alternativa D

×
(ITA - 2004) Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?
a)
210
b)
315
c)
410
d)
415
e)
521

 



resposta: (A)
×
(ITA - 2004) Sejam as funções $\;f\;$ e $\;g\;$ definidas em $\;{\rm I\!R}\;$ por $\;f(x) = x^2 + \alpha x\; $ e $\;g(x) = -(x^2 + \beta x)\;$, em que $\alpha$ e $\beta$ são números reais. Considere que estas funções são tais que
$f$$g$
Valor
mínimo
Ponto de
mínimo
Valor
máximo
Ponto de
máximo
$-1$$< 0$$\frac{9}{4}$$> 0$

Então a soma de todos os valores de $\;x\;$ para os quais $\;(f \circ g)(x) = 0\;$ é igual a:
a)
0
b)
2
c)
4
d)
6
e)
8

 



resposta: (D)
×
(ITA - 2004) Assinale a opção que representa o lugar geométrico dos pontos $\;(x,y)\;$ do plano que satisfazem a equação:

$ det \begin{bmatrix} x^2 + y^2 & x & y & 1 \\ 40 & 2 & 6 & 1 \\ 4 & 2 & 0 & 1 \\ 34 & 5 & 3 & 1 \end{bmatrix} = 288 \;$ .

a) Uma elipse.
b) Uma parábola.
c) Uma circunferência.
d) Uma hipérbole.
e) Uma reta.

 



resposta: alternativa C
×
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.

 



resposta:
Resolução:
circunferência no plano cartesiano
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$.
$\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3.
$\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$.
O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
$\;\dfrac{|3a\,-\,2\sqrt{2}\,+\,5\,+\,2\sqrt{2}\,-\,3a|}{\sqrt{a^2\,+\,1}}\,=\,3 \;\Rightarrow$ $\; \dfrac{5}{a^2\,+\,1}\,=\,3 \;\Rightarrow $ $\; a\;=\;\dfrac{4}{3}$ ou $\;a = -\, \dfrac{4}{3}$.
As equações das tangentes são:
$\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$

×
Em "Eu era enfim, senhores, uma graça de alienado.", os termos da oração, grifados, são respectivamente, do ponto de vista sintático:

a) adjunto adnominal, vocativo e predicativo do sujeito
b) adjunto adverbial, aposto e predicativo do objeto
c) adjunto adverbial, vocativo e predicativo do sujeito
d) adjunto adverbial, vocativo e objeto direto
e) adjunto adnominal, aposto e predicativo do sujeito

 



resposta: C
×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
(FUVEST) "Podem acusar-me: estou com a consciência tranquila."

Os dois pontos (:) do período acima poderiam ser substituídos por vírgula, explicando-se o nexo entre as duas orações pela conjunção:

a) portanto
b) e
c) como
d) pois
e) embora

 



resposta: D
×
(FEI) O triângulo ABC é equilátero; D e E são os pontos médios de BH e CH. Comparar as áreas $S_1$ do retângulo DHEM com $S_2$ do retângulo DEGF.
a)
são iguais
b)
$S_1$ < $S_2$
c)
$S_1$ > $S_2$
d)
dependem da medida do lado do triângulo e assim pode ser qualquer das anteriores.
e)
$S_1 + S_2 =\dfrac{a^2\sqrt{3}}{16}$
triângulo equilátero ABC

 



resposta: (A)
×
(ITA - 2012) As retas $\;r_1\;$ e $\;r_2\;$ são concorrentes no ponto $\;P\;$, exterior a um círculo $\;\omega\;$. A reta $\;r_1\;$ tangencia $\;\omega\;$ no ponto $\;A\;$ e a reta $\;r_2\;$ intercepta $\;\omega\;$ nos ponto $\;B\;$ e $\;C\;$ diametralmente opostos. A medida do arco $\;\stackrel \frown{AC}\;$ é $\;60^o\;$ e $\;\overline{PA}\;$ mede $\;\sqrt{2}\;$ cm. Determine a área do setor menor de $\;\omega\;$ definido pelo arco $\stackrel \frown{AB}\;$.

 



resposta:
ITA 2012 EXERCISE 32

Resolução: De acordo com a figura traçada a partir do enunciado:
1. o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente).
Então
$\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$.
$tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$
$ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$
2. o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$.
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$

Resposta:$S = \dfrac{2\pi}{9}\; cm^2$
×
(UEMT) Para que os pontos (1; 3) e (3, -1) pertençam ao gráfico da função dada por $\,f(x)\,=\, ax + b\,$, o valor de $\,b - a\,$ deve ser
a)
7
b)
5
c)
3
d)
-3
e)
-7

 



resposta: (A)
×
Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.

 



resposta:
Resolução:
Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).
plano cartesiano mostrando ponto Pe xis ípsilon
Resposta:
$\,A(2\,;\,3)\;\;\;\Rightarrow \; \left\{\begin{array}{rcr} A_x\;(2\,;\,0) \phantom{X}& \\ A_y\;(0\,;\,3)\phantom{X}& \\ \end{array} \right.$
$\,B(3\,;\,-1)\;\;\Rightarrow \; \left\{\begin{array}{rcr} B_x\;(3\,;\,0) \phantom{XX}& \\ B_y\;(0\,;\,-1)\phantom{X}& \\ \end{array} \right.$
$\,C(-5\,;\,1)\;\Rightarrow \; \left\{\begin{array}{rcr} C_x\;(-5\,;\,0) \phantom{X}& \\ C_y\;(0\,;\,1)\phantom{XX}& \\ \end{array} \right.$
$\,D(-3\,;\,-2)\;\Rightarrow \; \left\{\begin{array}{rcr} D_x\;(-3\,;\,0) \phantom{X}& \\ D_y\;(0\,;\,-2)\phantom{X}& \\ \end{array} \right.$
$\,E(-5\,;\,-1)\;\Rightarrow \; \left\{\begin{array}{rcr} E_x\;(-5\,;\,0) \phantom{X}& \\ E_y\;(0\,;\,-1)\phantom{X}& \\ \end{array} \right.$

×
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.

 



resposta: $\;f(x)\,=\,x^2\,+\,2x\,+\,1\;$
×
Na figura, as curvas tracejada e cheia são os gráficos das funções $\,f\,$ e $\,g\,$, respectivamente.
funções efe e gê com pontos a e b
São feitas as afirmações a seguir de (I) a (V):
Os únicos valores de $\,x \, \in \; [{\small -3};\,5]\;$ tais que:
I)
$\,f(x) \,=\, g(x)\;$ são $\; -2\,$, $\;a\,$ e $\;b$
II)
$\,f(x)\, > \,g(x)\;$ são $\; -2 \, < \,x\, < \, a\;$ ou $\; 3 \, < \,x\, < 5$
III)
$\,f(x)\, \geqslant \, g(x) \;$ são $\; -2 \,\leqslant \,x\, \leqslant \, a\;$ ou $\;b \, < \,x\, < 5$
IV)
$\,f(x)\, < \, g(x) \;$ são $\; a \, < \,x\, < \,b$
V)
$\,g(x)\, \leqslant \, g(x) \;$ são $ \; -3 \, \leqslant \,x\, \leqslant \, -2\;$ ou $\;a\,\leqslant \,x\,\leqslant b$
Responda de acordo com o código:
a)
Se todas as afirmações estão corretas
b)
Se apenas (I) e (III) estão corretas
c)
Se apenas (II) e (IV) estão corretas
d)
Se apenas (I) e (V) estão corretas
e)
Se todas estão erradas

 



resposta: (D)
×
(FAAP) Na figura, enquanto $\,x\,$ varia de 0 a $\,\beta\,$, os pontos $\;P_1\;$ e $\;P_2\;$ percorrem arcos nas parábolas $\,y\,=\,x^2\,-\,4x \;\;$ e $\;\;-x^2\,+\,16x\;$.
gráfico das parábolas
Pede-se:
a)
o valor de $\,\beta\,$
b)
a maior distância entre $\,P_1\,$ e $\,P_2\,$.

 



resposta: a)$\,\beta\,=\,10\,$ b) maior distância : $\,d_{P1-P2} \,=\,50\,$
×
(MED JUNDIAÍ - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$, definida por $\;f(x)\,=\,-x^2\,+\,ax\,+\,b\;$. Se os pontos (1 ; 3) e (0 ; 1) pertencem ao gráfico de $\,f\;$, um outro ponto do gráfico é:
a)
(-2 ; -1)
b)
(-1 ; -3)
c)
(2 ; 17)
d)
(3 ; 10)
e)
(4 ; -4)
 
 

 



resposta: (B)
×
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.

 



resposta:
Resolução:
Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:
plano cartesiano indicando simétrico de P em relação ao eixo das ordenadas
Observando a figura acima, podemos concluir:

$\,\boxed{\;P(x\, , \,y)\;\Rightarrow \;P_1(-x\, , \,y) \,}$

Resposta:
$\,A(-1\,,\,2)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,A_1(1\,,\,2)\,$
$\,B(3\,,\,-1)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,B_1(-3\,,\,-1)\,$
$\,C(-2\,,\,-2)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,C_1(2\,,\,-2)\,$
$\,D(-2\,,\,5)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,D_1(2\,,\,5)\,$
$\,E(3\,,\,-5)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,E_1(-3\,,\,-5)\,$

×
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$


 



resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades:
1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE
2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades:
1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE
2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
d)
se $\,x\,+\,y \, = \, 0\; \Rightarrow \; $ $\;x\,=\,-y \;\Rightarrow\; \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,2º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,4º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$

×
Representar no sistema de eixos cartesianos ortogonais os pontos: A (3 ; 4), B (-1 ; 2), C (-3 ; -4), D (4 ; -2), E (3 ; 0), F (0 ; -3) e G (0 ; 0).

 



resposta:
representação de pontos no sistema cartesiano

×
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
a)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{1}{2}} \right) \,$
b)
$\,\left({\large \frac{1}{2}; \frac{\sqrt{3}}{2}} \right) \,$
c)
$\,\left({\large \frac{1}{2}; \frac{1}{2}} \right) \,$
d)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{\sqrt{3}}{2}} \right) \,$
e)
nenhuma das alternativas
anteriores


 



resposta: alternativa B
×
Para um sistema de coordenadas ortogonais, estão certas as seguintes afirmações:
( 1 )
Pontos com abscissa nula estão no eixo 0x
( 2 )
A distância do ponto (-3 ; 5) ao eixo Oy é 3.
( 3 )
A distância entre os pontos A (-2 ; 4) e B (8 ; 4) vale 10.
( 4 )
A distância entre os pontos A (1 ; 5) e B (-3 ; 2) vale 5.
( 5 )
Os pontos da bissetriz dos quadrantes pares têm abscissa e ordenada iguais.


 



resposta:
Estão corretas 2, 3 e 4

×
Dadas as coordenadas dos pontos:
A (4 ; 3)
D (2 ; -3)
G (-6 ; -4)
B (5 ; 0)
E (-4 ; 2)
C (0 ; 4)
F (0 ; 0)
Achar as distâncias entre os pontos em cada um dos seguintes pares:
A e B
B e E
C e G
A e C
B e F
D e E
A e D
C e D
E e F

 



resposta:
$\;\overline{AB}\,=\,\sqrt{10}\;$
$\;\overline{BE}\,=\,\sqrt{85}\;$
$\;\overline{CG}\,=\,10\;$
$\;\overline{AC}\,=\,\sqrt{17}\;$
$\;\overline{BF}\,=\,5\;$
$\;\overline{DE}\,=\,\sqrt{61}\;$
$\;\overline{AD}\,=\,2\sqrt{10}\;$
$\;\overline{CD}\,=\,\sqrt{53}\;$
$\;\overline{EF}\,=\,2\sqrt{5}\;$

×
(MACKENZIE) Considere a figura abaixo. O comprimento do segmento $\phantom{X}\overline{MN} \phantom{X}$ é:
a)
$\,\sqrt{2\;}\,-\,{\dfrac{\;1\;}{2}}\,$
b)
$\,\sqrt{2\;}\,+\,{\dfrac{\;1\;}{\sqrt{2\;}}}\,$
c)
$\,\sqrt{2\;}\,+\,1\phantom{\dfrac{X}{X}}\,$
d)
$\,1\,-\,{\dfrac{\;\sqrt{\;2\;}\;}{2}}\,$
e)
$\,\sqrt{2\;}\,-\,1\,$
plano cartesiano com circunferência similar ao ciclo trigonométrico

 



resposta: (E)
×
(USP) Uma das diagonais de um quadrado tem extremidades A ( 1 ; 1 ) e C ( 3 ; 3 ) . As coordenadas dos outros dois vértices são:
a)
( 2 ; 3 ) e ( 3 ; 2 )
b)
( 3 ; 1 ) e ( 1 ; 3 )
c)
( 3 ; 0 ) e ( 1 ; 4 )
d)
( 5 ; 2 ) e ( 4 ; 1 )
e)
nenhuma das anteriores


 



resposta: alternativa B
×
Seja P ( x ; y ) o ponto simétrico do ponto A ( 1 ; 1 ) em relação à reta que passa pelos pontos B ( 4 ; 1 ) e C ( 1 ; 4 ) . Então x + y é igual a:
a)
4
b)
8
c)
6
d)
10
e)
12


 



resposta: alternativa B
×
(CESCEM) Determinar o ponto D no paralelogramo abaixo:
a)
( 1 ; -1 )
b)
( 2 ; -2 )
c)
( 2 ; -4 )
d)
( 3 ; -2 )
e)
( 3 ; -4 )
paralelogramo no plano cartesiano

 



resposta: (E)
×
(MACKENZIE) O ponto ( 3 ; m ) é interno a um dos lados do triângulo A ( 1 ; 2 ), B ( 3 ; 1 ) e C ( 5 ; -4 ) . Então:
a)
m = -1
b)
m = 0
c)
m = - 1/2
d)
m = -2
e)
m = -3

 



resposta: alternativa A
×
(CESCEM) O triângulo $\,ABC\,$ tem vértices $\,A\,(0\,;\,0)\,,\;B\,({\large \frac{3}{5}}\,;{\large\frac{3}{5}})\;$ e $\;C\,({\large -\frac{3}{5}};{\large \frac{3}{5}})\;$. A equação da reta que passa por $\;A\;$ e pelo ponto médio de $\,\overline{BC}\;$ é:

a)
x = 0
b)
y = 0
c)
$\,y\,=\,{\large \frac{5}{3}} \centerdot x$
d)
$\,y\,=\,{\large \frac{3}{5}} \centerdot x$
e)
$\,y\,=\,{\large -\frac{3}{5}} \centerdot x$


 



resposta: alternativa A
×
As retas $\phantom{X} 2x\,-\,y\,+\,3\,=\,0\phantom{X}$ e $\phantom{X} x\,-\,2y\,+\,6\,=\,0\phantom{X}$ interceptam-se:
a)
sobre o eixo das ordenadas
b)
no ponto $\,(-6 ; 0)\,$
c)
sobe o eixo das abscissas
d)
na origem dos eixos
e)
no ponto $\,(1 ; 5)\,$

 



resposta: alternativa A
×
Obter a equação segmentária da reta determinada pelo par de pontos A (2 ; 0) e B (0 ; -3)

 



resposta: $\,{\large \frac{x}{2}}\,+\,{\large \frac{y}{-3}}\,=\,1\,$
×
Obter a equação segmentária da reta determinada pelo par de pontos M (1 ; 1) e N (2 ; 3) .

 



resposta: $\,{\large \frac{x}{1/2}}\,+\,{\large \frac{y}{-1}}\,=\,1\,$
×
Os vértices de um triângulo são os pontos A (-1 ; 0), B (0 ; 3) e C (2 ; 4) . Determinar os coeficientes angulares e lineares das três retas suportes dos lados.

 



resposta: $\,m_{AB}\,=\,3\,$ e $\,h_{AB}\,=\,3\,$;
$\,m_{BC}\,=\,{\large \frac{1}{2}}\,$ e $\,h_{BC}\,=\,3\,$;
$\,m_{AC}\,=\,{\large \frac{4}{3}}\,$ e $\,h_{AC}\,=\,{\large \frac{4}{3}}\,\,$;

×
(CESCEM) Considere o triângulo $\phantom{X} V_1\;(0\,,\,0),\;V_2\;(a\,,\,a)\;$ e $\;V_3\;(a\,,\,-a) . \phantom{X}$ A equação da reta que passa pelo vértice $\,V_3\,$ e pelo ponto médio do lado $\,V_1V_2\,$ é:
a)
$\,y\,=\,-\,\dfrac{1}{3} \centerdot x \,+\,\dfrac{29}{3}\,$
b)
$\,y\,=\,-3x\,+\,2a\,$
c)
$\,y\,=\,x\,-\,1\,$
d)
$\,y\,=\,-\,\dfrac{1}{3} \centerdot (x\,-\, \dfrac{a}{2}) \,+\, \dfrac{a}{2}\,$
e)
$\,y\,=\,3x\,+\,2a\,$

 



resposta: (B)
×
Determinar a equação reduzida das retas que passam pelos seguintes pares de pontos:
a) A (0 ; 3) e B (-1 ; 0)
b) C (1 ; -2) e D (-3 ; 4)
c) E (3 ; 4) e F (-4 ; -3)

 



resposta:
a) y = 3x + 3
b) $\,y\,=\,-{\large \frac{3}{2}}x - {\large \frac{1}{2}}\,$
c) y = x + 1

×
(MACKENZIE) Observe a figura. Pertence à reta r o ponto:
a)
$\,(\,0\,;\,2\,-\,3\sqrt{3}\,)\,$
b)
$\,(\,2\,-\,\sqrt{3}\,;\,0\,)\,$
c)
$\,(\,0\,;\,\sqrt{3}\,-\,6\,)\,$
d)
$\,(\,3\,-\,\sqrt{3}\,;\,0\,)\,$
e)
$\,(\,0\,;\,3\,-\,2\sqrt{3})\,$
reta no plano cartesiano ângulo 60 graus passa pelo ponto 3, 2

 



resposta: (A)
×
(SANTA CASA) Num sistema de eixos ortogonais, a reta que passa pelo ponto P (2 ; 3) e é paralela ao eixo y , pode ser corretamente representada por:
a)
x = 2
b)
y = 3
c)
y = 2
d)
y = x + 2
e)
y - 2 = x - 3

 



resposta: alternativa A
×
(CESCEM) Uma reta pela origem de coeficiente angular negativo tem somente 3 pontos em comum com o gráfico da função $\phantom{X} y\,=\,\operatorname{sen}x\phantom{X}$. A menor das 3 correspondentes abscissas:
a)
é um múltiplo de $\,\pi\,$
b)
está entre $\;\dfrac{-3\pi}{2}\;$ e $\;-\pi\,$
c)
é nula
d)
está entre $\;-2\pi\;$ e $\, \dfrac{-3\pi}{2}\;$
e)
é positiva

 



resposta: alternativa B
×
Determinar a equação da circunferência que tem um diâmetro determinado pelos pontos A (5 , -1) e B (-3 , 7) .

 



resposta:
Resolução:
O segmento $\,\overline{AB}\,$ é um diâmetro da circunferência, então o centro da circunferência é o ponto médio de $\,\overline{AB}\,$:
$\left\{\begin{array}{rcr} A(5\, ,\,-1) \phantom{X}& \\ B(-3\,,\,7) \phantom{X}& \\ \end{array} \right. \;$ $\Rightarrow \;C\,\left( \frac{5 - 3}{2}\,;\,\frac{-1+7}{2} \right)\;\Rightarrow\;C\,(1\,;\,3)$
O raio da circunferência é obtido através da distância AC ou da distância BC.
$\,r\,=\,|AC|\,=$ $\,{\large\,\sqrt{(5\,-\,1)^2\,+\,(-1\,-\,3)^2}}\,=\,\sqrt{32}\,$
A equação da circunferência de raio $\,\sqrt{32}\,$ e centro $\,C\,(1 ; 3)\,$ é:
$\,(x\,-\,1)^2\,+\,(y\,-\,3)^2\,=\,32\;\Rightarrow$ $\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\;}\,$

×
Determinar a equação da circunferência que passa pela origem do sistema cartesiano e cujo centro é o ponto de coordenadas (4 , -3) .

 



resposta:
circunferência no plano cartesiano

Resolução:


O raio da circunferência é a distância do centro até a origem:
$R\,=\,d_{CO}\,=$ $\,{\large\,\sqrt{(x_C\,-\,x_O)^2\,+\,(y_C\,-\,y_O)^2}}$
$R\,=\,{\large\,\sqrt{(4\,-\,0)^2\,+\,(-3\,-\,0)^2}}\;\Rightarrow\;$
$R\,=\,\sqrt{16\,+\,9}\;\Rightarrow\;R\,=\,5$
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\,$
Sabemos que o centro é $\;C\,(4\,,\,-3)\;$ e raio $\,R\,=\,5\,$. Temos então:
$(x\,-\,4)^2\,+\,[y\,-\,(-3)]^2\,=\,(5)^2\;\Rightarrow$ $\;(x\,-\,4)^2\,+\,(y\,+\,3)^2\,=\,5^2\;\Rightarrow$

$\;\boxed{\;x^2\,+\,y^2\,-\,8x\,+\,6y\,=\,0\;}$


×
Determinar a equação da circunferência que passa pelo ponto A (-1 , 6) e tangencia o eixo dos "y" no ponto B (0 , 3) .

 



resposta:
Resolução:
Sendo o centro da circunferência
o ponto C (x , 3) conforme a figura:
circunferência tangente ao ponto zero três no plano cartesiano
Sendo $\;\overline{CA}\;$ e $\;\overline{CB}\;$ raios da mesma circunferência,
são segmentos de medidas iguais:
$ \overline{CA}\,=\overline{CB}\,$
$\;\sqrt{ (x\,+\,1)^{\large 2}\,+\,(3\,-\,6)^{\large 2}} \,= $ $\,\sqrt{ (x\,-\,0)^{\large 2}\,+\,(3\,-\,3)^{\large 2} } $
Elevando ao quadrado, simplificando, temos:
$(x\,+\,1)^{\large 2}\,+\,9\,=\,x^{\large 2}\;\Rightarrow\;$ $x\,=\,-5\,$
Então o centro é $\,C\,(-5\,,\,3)\,$ e o raio é $\,\overline{BC}\,=\,5$
e a equação da circunferência:
$\,(x\,+\,5)^2\,+\,(y\,-\,3)^2\,=\,5^2\;\Rightarrow\;$ $\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\;}\,$
×
Determinar no eixo das abscissas um ponto M , cuja distância até o ponto P (2 , -3) seja igual a 5 unidades.

 



resposta: Resolução:
Se o ponto pertence ao eixo das abscissas, sua coordenada no eixo das ordenadas é zero.
$\,M\in0x\phantom{X}\Rightarrow\;$
$\;y_{M}\,=\,0\,$
$\,d_{MP}\,=\,5\;\Rightarrow\;$
$\sqrt{{\large (x_M\,-\,x_P)^2\,+\,(y_M\,-\,y_P)^2}}\,=\,5\;\Rightarrow$
$\phantom{XXXXX}\Rightarrow\;$
$\sqrt{{\large (x_M\,-\,2)^2\,+\,[0\,-\,(-3)]^2}}\,=\,5\;\Rightarrow$
$\phantom{XXXXX}\Rightarrow\;$
$(x_M\,-\,2)^2\,+\,9\,=\,25\;\Rightarrow$
$\phantom{XXXXX}\Rightarrow\;$
$(x_M\,-\,2)^2\,=\,16\;\Rightarrow\;x_M\,-\,2\,=\,\pm4\,\;\Rightarrow\;\left\{\begin{array}{rcr} x_M\,=\,6 \phantom{X}& \\ x_M\,=\,-2 & \\ \end{array} \right.$
$\therefore \;\;M_1\,(6\,;\,0)\;\;M_2\,(-2\,;\,0)$

Resposta:
$M_1\,(6\,;\,0)\;\;$ ou $\;\;M_2\,(-2\,;\,0)$

×
Determinar a natureza do triângulo: A (2 ; -3), B (-5 ; 1) e C (4 ; 3).

 



resposta: Resolução:
Primeiro determinar os comprimentos dos lados do triângulo.
$AB\;=$
$\sqrt{{\large (2\,+\,5)^2\,+\,(-3\,-\,1)^2}}\,\,=\,\sqrt{65}$
$BC\;=$
$\sqrt{{\large (4\,+\,5)^2\,+\,(3\,-\,1)^2}}\,\,=\,\sqrt{85}$
$AC\;=$
$\sqrt{{\large (4\,-\,2)^2\,+\,(3\,+\,3)^2}}\,\,=\,\sqrt{40}\,=\,2\centerdot \sqrt{10}$
Como:
$\,AB \neq BC \neq AC\; \Rightarrow \; \triangle$escaleno
$BC\, < AB^2 + AC^2\;\Rightarrow\; \triangle$acutângulo
Resposta: escaleno e acutângulo .
×
Determinar o ponto no eixo 0x equidistante dos pontos A (6 , 5) e B (-2 , 3) .

 



resposta: Resolução:
O ponto P equidistante de A e B está no eixo x , portanto sua ordenada é nula e podemos representar P (x , 0) .
Da equidistãncia:
$\;\begin{array}{rcr} \text{distância}_{PA} = \text{distância}_{PB} \phantom{XXXXXX} & \\ \sqrt{(x\,-\,6)^2\,+\,(0\,-\,5)^2}\,=\,\sqrt{(x\,+\,2)^2\,+\,(0\,-\,3)^2}& \\ \end{array} $
Elevar os lados ao quadrado:
$\,x^2\,-\,12x\,+\,36\,+\,15\,=\,x^2\,+\,4x\,+\,4\,+\,9\,$
desenvolvendo a equação temos $\,\boxed{x\,=\,3}\,$. Se x = 3 então P(x,0) é o ponto P(3;0)
Resposta:
$\;\boxed{\;(3\,;\,0)\;}$

×
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.

 



resposta:
Considerações:

A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.

Veja aqui
triângulo ABC circunscrito na circunferência

Resolução:

Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
$\phantom{X}\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OB}\,=\,R \;& \\ \end{array} \right\}\;\Rightarrow\;$ $\;d_{OA}\,=\,d_{OB}\;\Rightarrow \,\sideset{}{_{OA}^2}d\;=\sideset{}{_{OB}^2}d\;\Rightarrow$
1.
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\,$ ${\small (x\,-\,9)^2\,+\,[y\,-\,(-10)]^2\;}\Rightarrow $
${\small x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=$ ${\small \,x^2\,-\,18x\,+\,81\,+\,y^2\,+\,20y\,+\,100\;}\Rightarrow $
${\small 6x\,-\,12y\,+\,18x\,-\,20y}\,=$ $\,{\small 81\,+\,100\,-\,9\,-\,36}\;\Rightarrow $
${\small 24x\,-\,32y\,=\,136}\;\Rightarrow \;$ $\boxed{\;3x\,-\,4y\,=\,17\;}\;\text{(I)}$
2.
$\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OC}\,=\,R \;& \\ \end{array} \right\}\;$ $\;\Rightarrow\;d_{OA}\,=\,d_{OC}\;\Rightarrow \;\sideset{}{_{OA}^2}d\;=\sideset{}{_{OC}^2}d\;\Rightarrow$
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\;$ $\,{\small [x\,-\,(-5)]^2\,+\,(y\,-\,4)^2}\;\Rightarrow $
${\small \, x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=\,$ ${\small \,x^2\,+\,10x\,+\,25\,+\,y^2\,-\,8y\,+\,16}\;\Rightarrow $
${\small \,6x\,-\,12y\,-\,10x\,+\,8y}\,=\,$ ${\small \,25\,+\,16\,-\,9\,-\,36}\;\Rightarrow $
${\small \,-4x\,-\,4y\,=\,-4}\;\Rightarrow\;$ $\; \boxed{\;x\,+\,y\,=\,1\;}\;\text{(II)} $
3.
O próximo passo é resolver o sistema de duas equações (I) e (II):
$\;\left\{\begin{array}{rcr} 3x\,-\,4y\,=\,17 & \\ x\,+\,y\,=\,1\phantom{X} \;& \\ \end{array} \right.\;\Rightarrow\;$ $\;\left\{\begin{array}{rcr} x\,=\,3\;\; & \\ y\,=\,-2& \\ \end{array} \right.\;\Rightarrow\;$ $\; 0\,(3\,,\,-2)\,$
Sabemos então que o centro tem coordenadas (3 , -2) , então vamos calcular a medida do raio:
$\,R\,=\,d_{OA}\,=\,$ $\,\sqrt{[3\,-\,(-3)]^2\,+\,(-2\,-\,6)^2}\;\Rightarrow\;$ $\;R\,=\,10$
Resposta:
$\;\boxed{0\,(3\,,\,-2)\;\text{e}\;R\,=\,10}\,$

×
Dados os pontos A (-3 ; 6) e B (7 ; -1) , determinar as coordenadas do ponto médio do segmento $\;\overline{AB}\,$.

 



resposta: Resolução:
Se um ponto $\;M\,(x_M\,;\,y_M)\;$ é o ponto médio do segmento $\;\overline{AB}\;$ então:
(I)
A coordenada $\,x_M\,$ é a média aritmética dos valores das coordenadas $\,x_A\,$ e $\,x_B\,$
$x_M\,=\,{\large \frac{x_A + x_B}{2}}\;\Rightarrow\;x_M\,=\,{\large \frac{(-3) + 7}{2}}\,=\,2$
(II)
A coordenada $\,y_M\,$ é a média aritmética dos valores das coordenadas $\,y_A\,$ e $\,y_B\,$
$y_M\,=\,{\large \frac{y_A + y_B}{2}}\;\Rightarrow\;y_M\,=\,{\large \frac{6 +(-1)}{2}}\,=\,\frac{5}{2}$
concluímos que o ponto médio é $\;M\,(2\,;\frac{5}{2})$

Resposta:$\;\boxed{\;M\,(2\,;\,\frac{5}{2})\;}\,$

×
(SANTA CASA) O triângulo ABC é tal que A é a origem do sistema de coordenadas, B e C estão no 1º quadrante e AB = BC . A reta s , que contém a altura do triângulo traçada por B , intercepta $\,\overline{AC}\,$ no ponto M . Sendo M (2 ; 1) e C (x ; y) , então x + y é igual a:
a)
3
b)
5
c)
6
d)
7
e)
9

 



resposta: alternativa C
×
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
a)
(1 ; 0)
b)
(11 ; 0)
c)
(3 ; 5)
d)
(6 ; 5)
e)
(3 ; 4)

 



resposta: alternativa E
×
(USP) Dados os pontos A (1 ; -4) , B (1 ; 6) e C (5 ; 4 ) e sabendo-se que $\;AB^2\;=\;BC^2\,+\,AC^2\;$, então, a soma das coordenadas do centro da circunferência que passa pelos pontos A , B e C é:
a)
2
b)
1
c)
3
d)
4
e)
5

 



resposta: alternativa A
×
Os pontos médios dos lados de um triângulo são os pontos D (2 ; 1) , E (-6 ; 3) e F (-4 ; -5) . Calcular as coordenadas dos vértices.

 



resposta: (0;9), (4;-7) e (-12;-3)

×
(MAUÁ) Determinar as coordenadas dos vértices de um triângulo, sabendo-se que os pontos médios de seus lados são: (-2 ; 1) , (5 ; 2) e (2 ; -3) .

 



resposta: (1 ; 6) , (9 ; -2) e (-5 ; -4) .

×
Uma bala animada de movimento retilíneo e com velocidade por hipótese constante, igual a 250 m/s , atinge um alvo; o ruído produzido pelo impacto é ouvido no ponto em que a bala foi disparada 1,2 s após o disparo. Determinar a distância do alvo ao ponto de que foi disparado o projétil.
Velocidade do som: 340 m/s .

 



resposta: 173,8 m
×
(ITA - 1979) Considere o triângulo ABC , onde AD é a mediana relativa do lado BC . Por um ponto arbitrário M do segmento BD , tracemos o segmento MP paralelo a AD , onde P é o ponto de intersecção desta paralela com o prolongamento do lado AC . Se N é o ponto de intersecção de AB com MP , podemos afirmar que:
a)
MN + MP = 2BM
b)
MN + MP = 2CM
c)
MN + MP = 2AB
d)
MN + MP = 2AD
e)
MN + MP = 2AC
triângulo ABC com mediana AD e prolongamento de AC

 



resposta:
Resolução:
1.$\;\overline{MN}\;$ é paralelo a $\;\overline{AD}\;$ e $\;\overline{AD}\;$ é paralelo a $\;\overline{MP}\;$
$MN // AD\;\Rightarrow\;$ $\;\triangle BMN\thicksim\triangle BDA\;\Rightarrow\;\dfrac{MN}{DA}\,=\,\dfrac{BM}{BD}\;\Rightarrow\;$ $\;MN\,=\,DA\centerdot\, \dfrac{BM}{BD}\phantom{X}$(I)
$AD // MP\;\Rightarrow\;\triangle MPC\thicksim\triangle DAC\;\Rightarrow\;$ $\; \dfrac{MP}{DA}\,=\, \dfrac{MC}{DC}\;\Rightarrow\;$ $\;MP\,=\,DA\centerdot\,\dfrac{MC}{DC}\phantom{X}$(II)
2. Fazendo a soma (I) + (II):
$\;MN\,+\,MP\,=\,$ $\,DA\,\centerdot\,\dfrac{BM}{BD}\,+\,DA\,\centerdot\,\dfrac{MC}{DC}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,(\dfrac{BM}{BD}\,+\, \dfrac{MC}{DC})$
3.$\;AD\;$ é a mediana relativa ao lado $\;BC\;\Rightarrow\;D\;$ é ponto médio de $\;BC\;\Rightarrow\;BD\,=\,DC\;$.
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM}{BD}\,+\, \dfrac{MC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM + MC}{BD}\right)$
4. Da figura, $\;BM\,+\,MC\,=\,BC\;$, então concluimos que:
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left( \dfrac{BC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{(BD\,+\,DC)}{BD}\;\Leftrightarrow$
$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,\dfrac{(BD\,+\,BD)}{BD}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{2(BD)}{BD}\;\Leftrightarrow$$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,2\;\Leftrightarrow\;$
$\;\boxed{\;MN\,+\,MP\,=\,2\,\centerdot\,DA\;}$
Resposta:
(D)

×
(ITA - 1990) Seja $\;C\;$ o centro da circunferência $\;x^2\,+\,y^2\,-\,6\sqrt{2}y\,=\,0\;$. Considere $\,A\,$ e $\,B\,$ os pontos de intersecção desta circunferência com a reta $\,y\,=\,\sqrt{2}x\,$. Nestas condições o perímetro do triângulo de vértices $\,A\,$, $\,B\,$ e $\,C\,$ é:
a)
$\,6\sqrt{2}\,+\,\sqrt{3}\,$
b)
$\,4\sqrt{3}\,+\,\sqrt{2}\,$
c)
$\,\sqrt{2}\,+\,\sqrt{3}\,$
d)
$\,5\sqrt{3}\,+\,\sqrt{2}\,$
e)
n.d.a.

 



resposta: (E)
×
(UNESP) Os pontos A, B, C, D, E e F pertencem a uma circunferência . O valor de $\phantom{X}\alpha\phantom{X}$ é:
a)
60°
b)
50°
c)
45°
d)
40°
e)
35°
ângulo excentrico interno da circunferência

 



resposta: alternativa B
×
(FGV) As cordas $\,\overline{AB}\,$ e $\,\overline{CD}\,$ de uma circunferência de centro $\,O\,$ são, respectivamente, lados de polígonos regulares de 6 e 10 lados inscritos nessa circunferência. Na mesma circunferência, as cordas $\,\overline{AD}\,$ e $\,\overline{BC}\,$ se intersectam no ponto $\,P\,$, conforme indica a figura a seguir:
circunferência com duas cordas concorrentes num ponto excêntrico

A medida do ângulo $\,B\hat{P}D\,$, indicado na figura por $\,\alpha\,$, é igual a:
a)
120°
b)
124°
c)
128°
d)
130°
e)
132°

 



resposta: (E)
×
(UNESP) Em um plano horizontal encontram-se representadas uma circunferência e as cordas $\,AC\,$ e $\,BD\,$. Nas condições apresentadas na figura, determine o valor de $\,x\,$.
plano horizontal


 



resposta: x = 7
×
(FUVEST - 2013) O mapa de uma região utiliza a escala de 1:200 000. A porção desse mapa, contendo uma Área de Preservação Permanente (APP), está representada na figura, na qual $\,\overline{AF}\,$ e $\,\overline{DF}\,$ são segmentos de reta, o ponto $\,G\,$ está no segmento $\,\overline{AF}\,$, o ponto $\,E\,$ está no segmento $\,\overline{DF}\,$, $\,ABEG\,$ é um retângulo e $\,BCDE\,$ é um trapézio. Se $\,AF\,=\,15\,$, $\,AG\,=\,12\,$, $\,AB\,=\,6\,$, $\,CD\,=\,3\,$ e $\,DF\,=\,5\sqrt{5}\,$ indicam valores em centímetros no mapa real, então a área da APP é
polígono de 5 lados

Obs: Figura ilustrativa, sem escala.

a)
100 km²
b)
108 km²
c)
210 km²
d)
240 km²
e)
444 km²

 



resposta: (E)
×
(FUVEST - 2015) A equação $\phantom{X}x^2\,+\,2x\,+\,y^2\,+\,my\,=\,n\phantom{X}$, em que $\,m\,$ e $\,n\,$ são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta $\phantom{X}y\,=\,-x\,+\,1\phantom{X}$ contém o centro da circunferência e a intersecta no ponto $\,(-3,\,4)\,$. Os valores de $\,m\,$ e $\,n\,$ são, respectivamente

a)
-4 e 3
b)
4 e 5
c)
-4 e 2
d)
-2 e 4
e)
2 e 3

 



resposta: alternativa A
×
As letras do código MORSE são formadas por sequências de traços (—) e pontos (●), sendo permitidas repetições. Por exemplo (—;●;—;●;●).
Quantas letras podem ser representadas:
a)
usando exatamente 3 símbolos?
b)
usando no máximo 8 símbolos?

 



resposta: a) 8
b) 510

×
(FEI - 1967)
rede
Caminhando sempre para a direita ou para cima, sobre a rede da figura, de quantas maneiras se pode ir do ponto A até a reta BC?
a)
8
b)
64
c)
256
d)
1024
e)
2048

 



resposta: (C)
×
(FGV - 1976) As peças de um jogo de dominó são pequenos retângulos de madeira, divididos em duas metades. Em cada metade está marcado um certo número de pontos. As peças são feitas de forma que os totais de pontos que aparecem em cada uma das metades são perfeitamente permutáveis girando-se a peça de meia volta. Por exemplo, a peça (2, 5) é também a peça (5, 2). Se em cada metade podem aparecer desde nenhum ponto até n pontos, então o número de peças diferentes é:
a)
$\,\dfrac{n(n\,+\,1)}{2}\,$
b)
$\,\dfrac{n(n\,-\,1)}{2}\,$
c)
$\,(n\,+\,1)!\,$
d)
$\,\dfrac{(n\,+\,1)!}{2}\,$
e)
$\,\dfrac{(n\,+\,2)(n\,+\,1)}{2}\,$

 



resposta: (E)
×
(ITA - 1990) Considere a reta $\,r\,$ mediatriz do segmento cujos extremos são os pontos em que a reta $\,2x\,-3y\,+7\,=\,0\,$ intercepta os eixos coordenados. Então a distancia do ponto $\,\left(\,\dfrac{1}{4},\,\dfrac{1}{6}\right)\,$ à reta $\,r\,$ é:
a)
$\,\dfrac{5\sqrt{3}}{2}\,$
b)
$\,\dfrac{4}{\sqrt{13}}\,$
c)
$\,35\sqrt{13}\,$
d)
$\,\dfrac{2\sqrt{3}}{7}\,$
e)
$\,\dfrac{2}{\sqrt{3}}\,$

 



resposta: Alternativa B
×
Veja exercÍcio sobre:
geometria analítica
coordenadas cartesianas
distância entre dois pontos