Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$