(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:
(PUC-RS - 1980) Se "$\;\ell\;$" é a medida da aresta de um tetraedro regular, então sua altura mede:
a)
$\;\dfrac{\ell\sqrt{2}}{3}$
c)
$\;\dfrac{\ell\sqrt{3}}{4}$
b)
$\;\dfrac{\ell\sqrt{3}}{2}$
d)
$\;\dfrac{\ell\sqrt{6}}{3}$
e)
$\;\dfrac{\ell\sqrt{6}}{9}$
resposta:
Resolução:
altura do tetraedro regular:
Na figura, o segmento $\;\overline{MC}\;$ ou apótema "g" na face inferior do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$: $\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$ O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo. A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então: $\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$ $\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$ Assim temos: $\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$ Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$
resposta:
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência: 1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R. 2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício). 3.Então a área de cada triângulo equilátero é base × altura ÷ 2 $\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$ 1. calcular $\;R\;$: $\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$: A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$. O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$): Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$. Pelo Teorema de Pitágoras: $\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
4. Calcular a área lateral da pirâmide: A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(MAUÁ) No cubo $\;(ABCDA'B'C'D')\;$ de aresta $\;\ell\;$, calcule o volume da parte piramidal $\;(AA'BD)\;$ e a altura do vértice $\;A\;$ em relação ao plano $\;A'BD\;$.
(FUVEST - 2015) O sólido da figura é formado pela pirâmide $\,SABCD\,$ sobre o paralelepípedo reto $\,ABCDEFGH\,$. Sabe-se que $\,S\,$ pertence à reta determinada por $\,A\,$ e $\,E\,$ e que $\,AE\,=\,2cm\,$, $\,AD\,=\,4cm\,$ e $\,AB\,=\,5cm\,$. A medida do segmento $\,\overline{SA}\,$ que faz com que o volume do sólido seja igual a $\,\dfrac{4}{3}\,$ do volume da pirâmide $\,SEFGH\,$ é
(USP) A altura de um tetraedro regular de aresta $\phantom{X}\ell\phantom{X}$ vale:
a)
$\,\dfrac{\,\ell\,\sqrt{\,6\,}\,}{\,3\,}\,$
b)
$\,\dfrac{\,\ell\,\sqrt{\,3\,}\,}{\,2\,}\,$
c)
$\,\ell\,\sqrt{\,3\,}\phantom{X}$
d)
$\,\ell\,\phantom{\dfrac{X}{X}}$
e)
$\,\ell\,\sqrt{\,2\,}\,$
resposta:
altura do tetraedro regular:
Na figura, o apótema "g" do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$: $\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$ O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo. A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então: $\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$ $\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$ Assim temos: $\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$ Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
Um monumento tem o pedestal em forma de tronco de pirâmide quadrada, onde o apótema tem 6 m e as bases tem lados de 4 m e 2 m. Qual o volume de concreto usado para fazer o pedestal?
resposta:
Conforme a figura, no triângulo hachurado ABC temos:
● o segmento AB é o apótema lateral com medida 6 m, ● o segmento BC é 1 m, igual a metade da diferença entre a medida dos lados da base menor e da base maior e ● e AC é altura do pedestal.
Pelo teorema de Pitágoras:
$\;(AB)^2\,=\,(BC)^2\,+\,(AC)^2\phantom{X}$ $\;(AC)^2\;=\;36\;-\;1\;\Longrightarrow\;\;(AC)\;=\;\sqrt{\;35\;}\phantom{X}$ Portanto a altura do tronco de pirâmide (pedestal) é $\,\sqrt{\,35\,}\,m\,$
$\;A_b\;=\;$ Área da base menor $\;= 2^2 = 4 m^2\;$ $\;A_B\;=\;$ Área da base maior $\;= 4^2 = 16 m^2\;$ $\;V_{tronco}\;=\;\dfrac{\;h\;}{\;3\;}\left({A_b\;+\;\sqrt{\;A_b\;\centerdot\;A_B\;}\;+\;A_B}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left( 4\;+\;\sqrt{\;4\;\centerdot\;16\;}\;+\;16\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;\sqrt{\;64\;}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;8\right)\phantom{X}$