Lista de exercícios do ensino médio para impressão
(FGV - 1978) O perímetro da figura abaixo é:
a)
$2(\sqrt{2} + \sqrt{3})$
b)
$(\sqrt{2} + \sqrt{3})^{2}$
c)
$4 + \sqrt{2} + \sqrt{6}$
d)
$\sqrt{3}+\sqrt{2}+2\sqrt{6}$
e)
$5$
figura do exercício m1504250926.png

 



resposta: Alternativa C
×
(CESGRANRIO - 1980) Um dos ângulos internos de um paralelogramo de lados 3 e 4 mede 120° . A maior diagonal deste paralelogramo mede:
a)
$5$
b)
$6$
c)
$\sqrt{40}$
d)
$\sqrt{37}$
e)
$6,5$

 



resposta: (D)
×
(UFGO - 1980) No triângulo abaixo, os valores de x e y , nesta ordem, são:
a)
$\;2\;$ e $\;\sqrt{3}$
b)
$\;\sqrt{3}\,-\,1\;\;$ e $\;2$
c)
$\;\dfrac{2\sqrt{3}}{3}\;$ e $\;\dfrac{\sqrt{6}\,-\,\sqrt{2}}{3}$
d)
$\;\dfrac{\sqrt{6}\,-\,\sqrt{2}}{3}\;$ e $\;\dfrac{2\sqrt{3}}{3}$
e)
$\;2\;$ e $\;\sqrt{3}\,-\,1$
representação do triângulo

 



resposta: (E)
×
(PUC-SP - 1984) A soma A + B + C + D + E das medidas dos ângulos:
a)
é 60°.
b)
é 120°.
c)
é 180°.
d)
é 360°.
e)
varia de "estrela" para "estrela".
imagem do exercício m1505181127.png

 



resposta: Alternativa C

×
(CESESP - 1986) Na figura abaixo as retas $\;r\;$ e $\;s\;$ são paralelas e as retas $\;t\;$ e $\;v\;$ são perpendiculares.
plano com 2 paralelas cortadas por 2 transversais perpendiculares entre si
Assinale, então, dentre as alternativas abaixo, a única que completa corretamente a sentença: " os ângulos distintos $\;\alpha\;$ e $\;\beta\;$ são...
a)
opostos pelo vértice"
b)
adjacentes"
c)
suplementares"
d)
complementares"
e)
sempre congruentes"

 



resposta: Alternativa D
×
(CESGRANRIO - 1989) Na figura, as retas $\,{\large r}\,$ e $\,{\large r'}\,$ são paralelas, e a reta $\,{\large s}\,$ é perpendicular a $\,{\large t}\,$. Se o menor ângulo entre $\,{\large r}\,$ e $\,{\large s}\,$ mede 72°, então o ângulo $\alpha$ da figura mede:
duas paralelas cortadas por duas perpendiculares
a)
36°
b)
32°
c)
24°
d)
20°
e)
18°

 



resposta: Alternativa E
×
(CESGRANRIO - 1990) Duas retas paralelas são cortadas por uma transversal, de modo que a soma de dois dos ângulos formados vale 72°. Então, qualquer dos ângulos obtusos formados mede:
a)
142°
b)
144°
c)
148°
d)
150°
e)
152°

 



resposta: Alternativa B
×
(CESGRANRIO - 1991) As retas $\;r\;$ e $\;s\;$ da figura são paralelas cortadas pela transversal $\;t\;$. Se o ângulo $\;B\;$ é o triplo de $\;A\;$, então $\;B\; - \;A\;$ vale:
duas paralelas cortadas por uma transversal
a)
90°
b)
85°
c)
80°
d)
75°
e)
60°

 



resposta: Alternativa A
×
(FUVEST - 1977) Num triângulo $\,ABC\,$, os ângulos $\hat{B}$ e $\hat{C}$ medem $50^o$ e $70^o$, respectivamente. A bissetriz relativa ao vértice $A$ forma com a reta $\overleftrightarrow{BC}$ ângulos proporcionais a:
a)
1 e 2
b)
2 e 3
c)
3 e 4
d)
4 e 5
e)
5 e 6

 



resposta: (D)
×
(CESGRANRIO - 1985) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número de tábuas de cada espessura é:
a)
12
b)
14
c)
16
d)
18
e)
25

 



resposta: Alternativa B
×
(UFMG - 1992) Os pontos $\;A, B, C, D\;$ são colineares e tais que $\;AB = 6$ cm, $\;BC = 2$ cm, $\;AC = 8$ cm e $\;BD = 1$ cm. Nessas condições, uma possível disposição desses pontos é:
a)
$ADBC$
d)
$BACD$
b)
$ABCD$
e)
$BCDA$
c)
$ACBD$

 



resposta: Alternativa A
×
(PUC-SP - 1980) Na figura abaixo, a = 100° e b = 110° . Quanto mede o ângulo x ?
a)
30°
b)
50°
c)
80°
d)
100°
e)
120°
triângulo isósceles com ângulos externos

 



resposta: Alternativa A
×
(FUVEST - 1981) Na figura AB = BD = CD . Então:
a)
y = 3x
b)
y = 2x
c)
x + y = 180°
d)
x = y
e)
3x = 2y
figura do exercício ângulos do triângulo

 



resposta: Alternativa A
×
(UFMG - 1981) Os ângulos $\alpha$ e $\beta$ da figura medem:
a)
$\alpha\,=\,20^o\;,\;\,\beta\,=\,30^o$
b)
$\alpha\,=\,30^o\;,\;\,\beta\,=\,20^o$
c)
$\alpha\,=\,60^o\;,\;\,\beta\,=\,20^o$
d)
$\alpha\,=\,20^o\;,\;\,\beta\,=\,20^o$
e)
$\alpha\,=\,10^o\;,\;\,\beta\,=\,20^o$
triângulo do exercício sobre ângulos

 



resposta: Alternativa D
×
(UCMG - 1982) Na figura ao lado, o ângulo $\phantom{X}A\hat{D}C\phantom{X}$ é reto. O valor, em graus, do ângulo $\phantom{X}C\hat{B}D\phantom{X}$ é de:
a)
95
b)
100
c)
105
d)
110
e)
120
triângulo ADC

 



resposta: Alternativa B
×
(PUC-SP - 1980) Na figura BC = CA = AD = DE . O ângulo $\;C\hat{A}D\;$ mede:
a)
10°
b)
20°
c)
30°
d)
40°
e)
60°
triângulo ABE isósceles

 



resposta: Alternativa B
×
(PUC-SP - 1984) Em um triângulo isósceles a média aritmética das medidas de dois de seus ângulos é 50°. A medida de um dos ângulos do triângulo pode ser:
a)
100°
d)
30°
b)
90°
e)
20°
c)
60°

 



resposta: Alternativa E
×
(FUVEST - 1991) Na figura, AB = AC , BX = BY e CZ = CY . Se o ângulo A mede 40° , então o ângulo XYZ mede:
a)
40°
b)
50°
c)
60°
d)
70°
e)
90°
triângulo com ângulo A 40 graus

 



resposta: Alternativa D
×
(UFMG - 1992) Observe a figura.

triângulo equilátero com bissetrizes

Nessa figura, $\overline{AB} \cong \overline{AC}$, $\overline{BD}$ bissetriz de $A\hat{B}C$, $\overline{CE}$ bissetriz de $B\hat{C}D$ e a medida do ângulo $A\hat{C}F$ é $140^0$. A medida do ângulo $D\hat{E}C$, em graus, é:
a)
20
b)
30
c)
40
d)
50
e)
60

 



resposta: Alternativa C
×
(UFRPE - 1991) Observe que, na figura abaixo, a reta $\phantom{X}{\large \ell}\phantom{X}$ faz ângulos idênticos com as retas $\phantom{X}{\large \ell_1}\phantom{X}$ e $\phantom{X}{\large \ell_2}\phantom{X}$. A soma $\;\alpha\,+\,\beta\,+\,\gamma\;$ vale:
a)
180°
b)
215°
c)
230°
d)
250°
e)
255°
feixe de retas

 



resposta: Alternativa C
×
(COVEST - 1990) No triângulo ABC, o ângulo $\hat{A}$ mede 110°. Qual a medida do ângulo agudo formado pelas retas que fornecem as alturas relativas aos vértices B e C?
a)
60°
b)
80°
c)
70°
d)
75°
e)
65°
triângulo ABC com ângulo 110 graus

 



resposta: Alternativa C
×
(FATEC - 1978) Na figura abaixo, $\;\;r\;\;$ é a bissetriz do ângulo $\;\;A\hat{B}C\;\;$. Se $\;\;\alpha = 40^o\;\;$ e $\;\;\beta = 30^o\;\;$, então:
triângulo ABC
a)
$\gamma = 0^o$
b)
$\gamma = 5^o$
c)
$\gamma = 35^o$
d)
$\gamma = 15^o$
e) os dados são insuficientes para a determinação de $\gamma$


 



resposta: (B)
×
(PUC-SP - 1981) Qual é o valor de x na figura ao lado?
a)
$\frac{\sqrt{3}}{3}$
b)
$\frac{5\sqrt{3}}{3}$
c)
$\frac{10\sqrt{3}}{3}$
d)
$\frac{15\sqrt{3}}{4}$
e)
$\frac{20\sqrt{3}}{3}$
triângulo retângulo com ângulos 30 graus e hipotenusa 40

 



resposta: Alternativa E
×
(FUVEST - 1977) $\;\;ABC\;\;$ é equilátero de lado $\;\;4\;$; $\;\;\overline{AM}\,=\,\overline{MC}\,=\,2\;$, $\;\;\overline{AP}\,=\,3\;\;$ e $\;\;\overline{PB}\,=\,1\;$. O perímetro do triângulo $\;\;APM\;\;$ é:
a)
$5 + \sqrt{7}$
b)
$5 + \sqrt{10}$
c)
$5 + \sqrt{19}$
d)
$5 + \sqrt{13 - 6{\large\sqrt{3}}}$
e)
$5 + \sqrt{13 + 6{\large\sqrt{3}}}$
triangulo ABC

 



resposta: Alternativa A
×
(CESESP - 1985) Considere a figura abaixo, onde G é o baricentro do triângulo ABC.

triângulo com baricentro
Assinale a única alternativa que corresponde à razão entre as áreas dos triângulos ABG e EGD.
a)
1
b)
2
c)
3
d)
4
e)
12

 



resposta: Alternativa D
×
(F.C.M.STA.CASA - 1981) Na figura ao lado temos o triângulo retângulo cujos lados medem 5 cm, 12 cm e 13 cm e a circunferência inscrita nesse triângulo. A área da região sombreada é, em cm² :
a)
$30(1-\pi)$
b)
$5(6-1,25\pi)$
c)
$3(10-3\pi)$
d)
$2(15-8\pi)$
e)
$2(15-2\pi)$
triângulo retângulo com circunferência circunscrita

 



resposta: (E)
×
(F.C.M.STA.CASA - 1980) Na figura ao lado, considere o segmento a = 2 m . A área da superfície sombreada é igual a:
circunferência com área sombreada
a)
$2\pi\;$m²
b)
$4\;$m²
c)
$2\;$m²
d)
$\pi\;$m²
e)
nenhuma das anteriores

 



resposta: (D)
×
(MACKENZIE - 1978) Quatro círculos de raio unitário, cujos centros são vértices de um quadrado, são tangentes exteriormente dois a dois. A área da parte sombreada é:
a)
$2\,\sqrt{3}\,-\,\pi$
b)
$3\,\sqrt{2}\,-\,\pi$
c)
$\dfrac{\pi}{2}$
d)
$4\,-\,\pi$
e)
$5\,-\,\pi$
quatro circunferências tangentes

 



resposta: Alternativa D
×
(V. UNIF. RS - 1980) Na figura, $\phantom{X}\stackrel \frown{AB} \phantom{X}$ é um arco de uma circunferência de raio 1 . A área do trapézio retângulo $\phantom{X}BCDE\phantom{X}$ é:
plano cartesiano com quadrado e arco
a)
$\dfrac{\sqrt{3}}{24}$
b)
$\dfrac{\sqrt{3}}{18}$
c)
$\dfrac{\sqrt{3}}{12}$
d)
$\dfrac{\sqrt{3}}{6}$
e)
$\dfrac{\sqrt{3}}{4}$

 



resposta: (A)
×
(COVEST - 1989) Na figura abaixo, o raio da semicircunferência mede 4 cm ; o polígono é um hexágono regular, e o ângulo $\;A\hat{O}B\;$ é reto. Assinale a alternativa correta para a medida da área da região sombreada.
hexágono no interior de uma semicircunferência
a)
$(\sqrt{3}\,-\,2\pi)\;$cm²
b)
$\pi\,\sqrt{3}\;$cm²
c)
$(\pi\,-\,\sqrt{3})\;$cm²
d)
$2(4\pi\,-\,3\sqrt{3})\;$cm²
e)
$(6\pi\,-\,2\sqrt{3})\;$cm²

 



resposta: (D)
×
(FUVEST - 1991) O retângulo ABCD representa um terreno retangular cuja largura é 3/5 do comprimento. A parte hachurada representa um jardim retangular cuja largura é também 3/5 do comprimento. Qual a razão entre a área do jardim e a área total do terreno?
a)
30 %
b)
36 %
c)
40 %
d)
45 %
e)
50 %
retângulo ABCD

 



resposta: Alternativa B
×
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
gangorra

 



resposta:
gangorra da vunesp

Considerações:

A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.

A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução:
O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais.
$\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
$\;\dfrac{1,2\, +\, 1,8}{1,8}\,=\,\dfrac{H}{\frac{\sqrt{3}}{2}}\;\Rightarrow\;$ $\;H\,=\,\dfrac{\sqrt{3}}{2}\centerdot\dfrac{30}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{\sqrt{3}}{1}\centerdot\dfrac{15}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{5\sqrt{3}}{6}\;\Rightarrow\;$ corresponde à
Alternativa D

×
Na figura abaixo, o valor de x é:
a)
5
b)
6
c)
7
d)
8
e)
9
triângulo retângulo de cateto 8 e hipotenusa 10

 



resposta: (B)
×
Conforme a figura abaixo, a medida do lado maior $\;x\;$ do retângulo é:
sobre teorema de Pitágoras
a)
5 m
b)
$\sqrt{47}\;$ m
c)
47 m
d)
25 m
e)
12 m

 



resposta: alternativa A
×
Na figura são dadas as medidas de dois lados de um triângulo retângulo. O terceiro lado mede:
a)
3
b)
$\sqrt{41}$
c)
$\sqrt{37}$
d)
4
e)
$\sqrt{34}$
triângulo retângulo de catetos 3 e 5

 



resposta: (E)
×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é:
a) um triângulo retângulo
b) um triângulo acutângulo
c) um triângulo obtusângulo
d) um triângulo equiângulo
e) nenhuma das anteriores

 



resposta: C
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
(PUC - 1973) Sabendo-se que o triângulo $\phantom{X}ABC\phantom{X}$ é retângulo e $\;\overline{AH}\,=\,h\;$ é a medida da altura do triângulo, quais das relações são válidas:
a)
$x\;=\;b\centerdot c$
b)
$x^2\;=\;h\centerdot c$
c)
$x^2\;=\;b\centerdot d$
d)
$x^2\;=\;b\centerdot c$
e)
nenhuma das anteriores
triângulo retângulo ABC com altura h

 



resposta: (D)
×
(ITA - 1979) Considere o triângulo ABC , onde AD é a mediana relativa do lado BC . Por um ponto arbitrário M do segmento BD , tracemos o segmento MP paralelo a AD , onde P é o ponto de intersecção desta paralela com o prolongamento do lado AC . Se N é o ponto de intersecção de AB com MP , podemos afirmar que:
a)
MN + MP = 2BM
b)
MN + MP = 2CM
c)
MN + MP = 2AB
d)
MN + MP = 2AD
e)
MN + MP = 2AC
triângulo ABC com mediana AD e prolongamento de AC

 



resposta:
Resolução:
1.$\;\overline{MN}\;$ é paralelo a $\;\overline{AD}\;$ e $\;\overline{AD}\;$ é paralelo a $\;\overline{MP}\;$
$MN // AD\;\Rightarrow\;$ $\;\triangle BMN\thicksim\triangle BDA\;\Rightarrow\;\dfrac{MN}{DA}\,=\,\dfrac{BM}{BD}\;\Rightarrow\;$ $\;MN\,=\,DA\centerdot\, \dfrac{BM}{BD}\phantom{X}$(I)
$AD // MP\;\Rightarrow\;\triangle MPC\thicksim\triangle DAC\;\Rightarrow\;$ $\; \dfrac{MP}{DA}\,=\, \dfrac{MC}{DC}\;\Rightarrow\;$ $\;MP\,=\,DA\centerdot\,\dfrac{MC}{DC}\phantom{X}$(II)
2. Fazendo a soma (I) + (II):
$\;MN\,+\,MP\,=\,$ $\,DA\,\centerdot\,\dfrac{BM}{BD}\,+\,DA\,\centerdot\,\dfrac{MC}{DC}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,(\dfrac{BM}{BD}\,+\, \dfrac{MC}{DC})$
3.$\;AD\;$ é a mediana relativa ao lado $\;BC\;\Rightarrow\;D\;$ é ponto médio de $\;BC\;\Rightarrow\;BD\,=\,DC\;$.
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM}{BD}\,+\, \dfrac{MC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\,\left(\dfrac{BM + MC}{BD}\right)$
4. Da figura, $\;BM\,+\,MC\,=\,BC\;$, então concluimos que:
$\;MN\,+\,MP\,=\,DA\,\centerdot\,\left( \dfrac{BC}{BD}\right)\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{(BD\,+\,DC)}{BD}\;\Leftrightarrow$
$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,\dfrac{(BD\,+\,BD)}{BD}\;\Leftrightarrow\;$ $\;MN\,+\,MP\,=\,DA\,\centerdot\, \dfrac{2(BD)}{BD}\;\Leftrightarrow$$\Leftrightarrow\;MN\,+\,MP\,=\,DA\,\centerdot\,2\;\Leftrightarrow\;$
$\;\boxed{\;MN\,+\,MP\,=\,2\,\centerdot\,DA\;}$
Resposta:
(D)

×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
(FUVEST - 2009) Na figura, estão representados a circunferência C, de centro O e raio 2, e os pontos A, B, P e Q, de tal modo que:
1. O ponto O pertence ao segmento $\,\overline{PQ}\,$.
2. OP = 1 ,   OQ = $\,\sqrt{2}\,$.
3. A e B são pontos da circunferência. $\;\overline{AP}\; \bot \;\overline{PQ}\phantom{X}$ e $\phantom{X}\overline{BQ}\; \bot\; \overline{PQ}\,$.

Assim sendo, determine:

a)
A área do triângulo APO.
b)
Os comprimentos dos arcos determinados por A e B em C.
circunferência com área hachurada

 



resposta:
a)
$\,\frac{\sqrt{3}}{2}\,$
b)
$\,\frac{5\pi}{6}\,$ e $\,\frac{19\pi}{6}\,$
c)
$\,\frac{3\sqrt{3}\,+\,6\,+\,5\pi}{6}\,$

×
Sendo a reta a paralela à reta b, determine x nos casos:
a)
duas paralelas cortadas por uma transversal a 50 graus
b)
duas paralelas cortadas por uma transversal a 120 graus

 



resposta: 50° e 60°
×
Se as retas r e s são paralelas, determine x nos seguintes casos:
a)
retas paralelas r e s cortadas por uma transversal
b)
diagrama retas paralelas cortadas por uma transversal

 



resposta: 60° e 70°
×
As retas r e s dos casos representados nas figuras são paralelas entre si. Determine x e y.
a)
duas retas paralelas e duas transversais
b)
duas paralelas cortada por duas transversais perpendiculares entre si

 



resposta: a) x = 120° e y = 75° b) x = 20° e y = 50°
×
Classifique as seguintes afirmativas como verdadeiras ou falsas:
a)
( )
por um ponto passam infinitas retas.
b)
( )
por dois pontos distintos passa uma reta.
c)
( )
uma reta contém dois pontos distintos.
d)
( )
dois pontos distintos determinam uma e uma só reta.
e)
( )
Pos três pontos dados passa uma só reta.

 



resposta:
a)
V
b)
V
c)
V
d)
V
e)
F

×
Classifique em verdadeiro (V) ou falso (F):
a)
( )
três pontos distintos são sempre colineares.
b)
( )
três pontos distintos são sempre coplanares.
c)
( )
quatro pontos todos distintos determinam uma reta.
d)
( )
por quatro pontos todos distintos pode passar uma só reta.
e)
( )
três pontos pertencentes a um plano são sempre colineares.

 



resposta:
a)
F
b)
V
c)
F
d)
V
e)
F

×
Classifique as afirmações seguintes em verdadeiras (V) ou falsas (F):
a)
( )
Quaisquer que sejam os pontos A e B, se A é distinto de B, então existe uma reta a tal que A ∈ a e B ∈ A.
b)
( )
Quaisquer que sejam os pontos P e Q e as retas r e s, se P é distinto de Q, e P e Q pertencem às retas r e s, então r = s.
c)
( )
Qualquer que seja uma reta r, existem dois pontos A e B tais que A é distinto de B, com A ∈ r e B ∈ r.
d)
( )
Se A = B, existe uma reta r tal que A, B ∈ r.

 



resposta:
a)
V
b)
V
c)
V
d)
V

×
Usando quatro pontos todos distintos, sendo três deles colineares, quantas retas podemos construir?

 



resposta: 4 (quatro) retas
×
Classifique em verdadeiro (V) ou falso (F):
a)
( )
Duas retas distintas que têm um ponto em comum são concorrentes.
b)
( )
Duas retas concorrentes têm um ponto em comum.
c)
( )
Se duas retas distintas têm um ponto comum, então elas possuem um único ponto comum.

 



resposta:
a)
V
b)
V
c)
V

×
Se o segmento AB mede 17 cm, determine o valor de x nos casos a seguir:
a)
segmento de reta com pontos A P B
b)
segmento de reta com pontos P B A
c)
segmento de reta 17cm com pontos A P B
d)
segmento de reta AP com ponto excêntrico B

 



resposta:
a)
10 cm
b)
4 cm
c)
7 cm
d)
14 cm

×
Determine x, sendo M o ponto médio de $\,\overline{AB}\,$:
a)
segmento de reta AB com ponto médio M
b)
segmento de reta AB - M é o ponto médio

 



resposta: a) 7b)6
×
Determine a medida de PQ, sendo AB = 31:
a)
segmento de reta APQB com AB igual a 31
b)
segmento de reta APBQ com AB igual a 31

 



resposta: a) 11b)32
×
Determine AB, sendo M o ponto médio de $\,\overline{AB}\,$:
a)

segmento AB com ponto médio M
b)

segmento AP com pontos internos M e B

 



resposta: a) 42b) 24
×
Determine o valor de x nos casos:
a) $\,s\,$ é perpendicular a $\;\overline{AB}\,$
circunferência de centro O com corda AB e reta s perpendicular a AB
b) $\,\overline{PA}\,$ e $\,\overline{PB}\,$ são tangentes à circunferência
ponto P externo é intersecção de duas tangentes à circunferência de centro O

 



resposta: a) 6b) 9
×
As circunferências da figura são tangentes externamente. Se a distância entre os centros é 28 cm e a diferença entre os raios é 8 cm, determine os raios.
dois círculos de tamanhos diferentes tangentes entre si

 



resposta: 18 cm e 10 cm
×
Determine o valor de x, sendo O o centro da circunferência nos casos:
a)

circunferência de centro O duas retas concorrentes em O formando 110 graus
b)
circunferência de centro O traçados diâmetro e tangente

 



resposta: a) 125° b) 145°
×
Quantas semi-retas há numa reta, com origem nos quatro pontos A, B, C e D da reta?

 



resposta: 8 semi-retas
×
Três pontos distintos de uma reta quantos segmentos distintos podem determinar?

 



resposta: 3 segmentos de reta
×
Quantos segmentos há que passam pelos pontos A e B distintos? Quantos há com extremidades em A e B?

 



resposta:

Infinitos segmentos passam pelos pontos A e B;
um único segmento tem extremidades A e B


×
Classifique em verdadeiro (V) ou falso (F):
a)
( )
Se dois segmentos são consecutivos, então eles são colineares.
b)
( )
Se dois segmentos são colineares, então eles são consecutivos.
c)
( )
Se dois segmentos são adjacentes, então eles são colineares.
d)
( )
Se dois segmentos são colineares, então eles são adjacentes.
e)
( )
Se dois segmentos são adjacentes, então eles são consecutivos.
f)
( )
Se dois segmentos são consecutivos, então eles são adjacentes.

 



resposta:
a)
F
b)
F
c)
V
d)
F
e)
V
f)
F
Obs. a) dois segmentos são consecutivos quando a extremidade de um coincide com a extremidade de outro — não são necessariamente colineares. Na figura a seguir, $\,\overline{AB}\,$ é consecutivo de $\,\overline{BC}\,$ e também $\,\overline{DE}\,$ é consecutivo de $\,\overline{EF}\,$
segmentos de reta consecutivos

×
Responda as afirmações de A) até E) como CERTO ou ERRADO.
A)
Se $\,\overline{AB}\,\cong\,\overline{BD}\,$ então $\,A\,=\,D\,$.
( )
B)
Todo plano é convexo.
( )
C)
A circunferência é convexa.
( )
D)
A união de duas
regiões convexas é convexa.
( )
E)
A reta é convexa.
( )

 



resposta:
A)
(ERRADO)
Resolução:
Podemos ter:
segmentos de reta AB e BD
onde a medida $\,(\overline{AB})\,$ é igual à medida de $\,(\overline{BD})\,$ e $\,A\,$ é diferente de $\,D\,$.
B)
(CERTO)
Resolução:
Seja um plano $\,\alpha\,$:
Se $\,\left\{\begin{array}{rcr} A\,\in\,\alpha& \\ B\,\in\,\alpha& \\ \end{array} \right.\; \Rightarrow\;$ $\,\overline{AB} \;\subset\;\alpha\;\;\forall\;A,B\;\in\,\alpha\;\Rightarrow$
$\,\Rightarrow \;\alpha \mbox { é convexo}\,$
C)
(ERRADO)
Resolução:
$\,\left\{\begin{array}{rcr} A\,\in\,\mbox{ circunferência}& \\ B\,\in\,\mbox{ circunferência}& \\ \end{array} \right.\;$ $ \Rightarrow\; \mbox{ o segmento}\;\overline{AB} \;\not\subset\; \mbox{ na circunferência}$
$\,\Rightarrow \;$ circunferência não é convexa.
segmentos de reta AB com A e B pontos de uma circunferência
D)
(ERRADO)
Resolução:
Como no exemplo, S1 e S2 são círculos; S1 é convexo e S2 é convexo.Na figura, S1 ∪ S2 = S que não é convexa, pois ∃ A,B ∈ S | AB ⊄ S
círculos S1 e S2 tangentes externamente com pontos A pertence a S1 e B pertence a S2 ligados
E)
(CERTO)
$\,\forall\,A,B\,\in\,\mbox{ reta } \;\Rightarrow\,\overline{AB}\,\subset\,\mbox{reta}\,$

×
(UFMG - 2001) Observe a figura.
Nessa figura, os pontos F , A e B estão em uma reta e as retas CB e ED são paralelas. Assim sendo, o ângulo $\;A\hat{B}C\;$ mede
a)
39°
b)
44°
c)
47°
d)
48°
e)
52°
figura polígono com lados CB e ED paralelos

 



resposta: (D)
×
(UFRN - 1999)
Na figura adiante, o ângulo θ mede:
a)
94°
b)
93°
c)
91°
d)
92°
e)
103°
ângulos de 90, 33 e 31 graus

 



resposta: (D)
×
O segmento AB de uma reta é igual ao quíntuplo do segmento CD dessa mesma reta. Determine a medida do segmento AB , considerando como unidade de medida a quinta parte do segmento CD.

 



resposta: 25
×
(UNESP - 1998) O triângulo ABC da figura é equilátero. Os pontos M e N e os pontos P e Q dividem os lados a que pertencem em três segmentos de reta de mesma medida.
Nessas condições calcule:
a)
a medida do ângulo MPQ (vértice P);
b)
a medida do ângulo BMQ (vértice M).
triângulo com lados divididos em 3 partes

 



resposta: a) MPQ = 120°b) BMQ = 90°
×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
Um ângulo tem por medida $\,\frac{\;3\;}{\;2\;}\,$ da medida de seu adjacente. O complemento do maior tem na sua medida 15°28' mais do que a diferença entre as medidas do maior e do menor. Calcular as medidas dos ângulos.

 



resposta: resposta59°54' e 37°16'
×
Com os dados da figura, calcular a medida do arco α em graus.
ângulo excêntrico exterior 80 graus

 



resposta:

Todo ângulo inscrito numa circunferência é igual à metade do ângulo central conrrespondente.

esqueminha do ângulo central
esqueminha do ângulo inscrito
ângulo excêntrico exterior com resposta
O ângulo central é a mesma medida em graus do arco de circunferência que ele determina.
Na figura, O ângulo inscrito de vértice M determina o arco α e portanto mede α/2.
O ângulo inscrito com vértice em P determina o arco de 80°, e portanto mede 40°.
O ângulo $\,M\hat{P}K\,$ mede então 180° - 40° = 140°.
A soma dos ângulos internos no triângulo MPK é 180° e portanto:
$\;\dfrac{\;\alpha\;}{\;2\;}\;+\;140\;+\;20\;=\;180\;\Rightarrow$ $\;\dfrac{\;\alpha\;}{\;2\;}\;=\;20\;\Rightarrow$ $\;\alpha\;=\;40^o\;$

A seguir o quadro-resumo das relações entre as posições do ângulos em relação à circunferência e o arcos determinados por estes

Arcos e Ângulos
Vértice
Tipo
Figura
Relações entre as medidas
centro da
circunferência
Ângulo Central
ângulo central
$\;\hat{O}\;=\;\stackrel \frown{AB}\;$
$\;\hat{O}\;=\;\alpha\;$
em um ponto
Ângulo Inscrito
ângulo inscrito
$\;\hat{P}\;=\;\dfrac{\stackrel \frown{AB}}{\;2\;}\;$
 
da circunferência
Ângulo de Segmento
ângulo de segmento
$\;\hat{P}\;=\;\dfrac{\;a\;}{\;2\;}\;$
Interior
Ângulo Excêntrico Interior
ângulo excêntrico interior
$\;\alpha\;=\;\dfrac{\stackrel \frown{AB}\,+\,\stackrel \frown{MN}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;a\,+\,b\;}{\;2\;}\;$
Exterior
Ângulo Excêntrico Exterior
ângulo excêntrico exterior
$\;\alpha\;=\;\dfrac{\stackrel \frown{MN}\,-\,\stackrel \frown{AB}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;b\,-\,a\;}{\;2\;}\;$
Exterior
Ângulo Circunscrito
ângulo circunscrito
$\;\beta\;=\;\dfrac{\;a\,-\,b\;}{2}\;$
ou
$\;\beta\;=\;(180^o\,-\,b)\;$
40°
×
Se r // s , determine $\,\hat{\,\alpha\,}\,$ na figura.
paralelas e transversais com bicos

 



resposta:
Considerações:

Na figura existem ângulos formando "bicos" e nesses bicos não existe nenhuma paralela. A solução inicia-se sempre traçando pelos bicos outras retas paralelas às retas já existentes.

retas paralelas com transversais onde estão marcados os bicos
Resolução:
paralelas cortadas por transversal marcados os alternos internos

Uma vez traçadas as retas paralelas às retas já existentes, podemos marcar os ângulos alternos internos que são congruentes entre si.

Na figura esses ângulos aparecem destacados com cores iguais.
Decorre que a medida de $\;\hat{\,\alpha\,}\;$ é (50° + 40°) = 90°
α = 90°
×
De acordo com a figura, se r // s , então $\,\hat{\,\alpha\,}\,$ vale:
ângulo de 120 graus cortado por paralelas
a)
90°
b)
100°
c)
110°
d)
120°
e)
22°40'

 



resposta: (E)
×
Na figura, r // s então $\;\hat{\;x\;}\;$ vale:
paralelas cortadas pelos lados de um ângulo reto
a)
90°
b)
100°
c)
110°
d)
120°
e)
nenhuma das alternativas anteriores

 



resposta: (B)
×
Na figura, calcular a medida de $\;\hat{\;x\;}\;$ :
duas paralelas cortadas por uma transversal

 



resposta: 41°42'43"
×
Determinar a medida do ângulo $\,x\,$ nas figuras seguintes:
a)
ângulo inscrito de 100 graus
b)
ângulo excêntrico externo
c)
ângulo x excêntrico interior

 



resposta: resposta
×
Determinar a medida do ângulo $\,x\,$ conforme a figura:
ângulo excêntrico interno

 



resposta:
O ângulo $\,\hat{x}\,$ é a média aritmética dos arcos.
$\,x\,=\,\dfrac{\,80\,+\,50\,}{2}\,=\,65^o\,$
Ângulos com vértice no interior do círculo:
Ângulo Excêntrico Interior
ângulo excêntrico interior
$\;\alpha\;=\;\dfrac{\stackrel \frown{AB}\,+\,\stackrel \frown{MN}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;a\,+\,b\;}{\;2\;}\;$

×
Determinar a medida do ângulo $\,x\,$ na figura:
ângulo inscrito

 



resposta:

Ângulo inscrito é aquele que possui vértice em um dos pontos da circunferência e seus lados são semi-retas secantes.

A medida de um ângulo inscrito é igual à metade do arco que seus lados delimitam na circunferência.

Ângulos com vértice em um ponto da circunferência
Ângulo Inscrito
ângulo inscrito
$\;\hat{P}\;=\;\dfrac{\stackrel \frown{AB}}{\;2\;}\;$
 
Ângulo de
Segmento
ângulo de segmento
$\;\hat{P}\;=\;\dfrac{\;a\;}{\;2\;}\;$
ângulo inscrito e ângulo central
Como o arco delimitado pelo ângulo $\;\hat{x}\;$ do enunciado é de 112°, a medida de $\;\hat{x}\;$ é igual à metade de 112°.⟶
x = 112°/2 = 56°
x = 56°
×
Veja exercÍcio sobre:
geometria plana
semelhança de triângulos
perímetro