Lista de exercícios do ensino médio para impressão
(VUNESP - 1990) Uma gangorra é formada por uma haste rígida AB , apoiada sobre uma mureta de concreto no ponto C , como na figura. As dimensões são:$\;\overline{AC}\,=\,1,2\;$m, $\;\overline{CB}\,=\,1,8\;$m, $\;\overline{DC}\,=\,\overline{CE}\,=\,\overline{DE}\,=\,1\;$m. Quando a extremidade B da haste toca o chão, a altura da extremidade A em relação ao chão é:
a)
$\sqrt{3}\;$m
b)
$ \dfrac{3}{ \sqrt{3}}\;$m
c)
$\dfrac{6 \sqrt{3}}{5}\;$m
d)
$\dfrac{5 \sqrt{3}}{6}\;$m
e)
$2\sqrt{2}\;$m
gangorra

 



resposta:
gangorra da vunesp

Considerações:

A figura representa a situação descrita no enunciado, com o ponto B tocando o chão.

A distância $\;\overline{PC}\;$ é a altura da mureta, cuja secção é um triângulo equilátero de lado medindo 1 metro, portanto $\;\overline{PC}\;$ vale $\;1\centerdot\dfrac{\sqrt{3}}{2}\phantom{X}$ (veja altura do triângulo equilátero em função do lado neste exercício
Resolução:
O triângulo $\;AQB\;$ é semelhante ao triângulo $\;CPB\;$ pois possuem o ângulo $\;\hat{B}\;$ comum e os ângulos $\;\hat{P}\;$ e $\;\hat{Q}\;$ são ângulos retos. Como são triângulos semelhantes, seus lados são proporcionais.
$\;\dfrac{\overline{AB}}{\overline{CB}}\,=\,\dfrac{\overline{AQ}}{\overline{CP}}\;\Rightarrow\;$
$\;\dfrac{1,2\, +\, 1,8}{1,8}\,=\,\dfrac{H}{\frac{\sqrt{3}}{2}}\;\Rightarrow\;$ $\;H\,=\,\dfrac{\sqrt{3}}{2}\centerdot\dfrac{30}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{\sqrt{3}}{1}\centerdot\dfrac{15}{18}\;\Rightarrow\;$
$\;H\,=\,\dfrac{5\sqrt{3}}{6}\;\Rightarrow\;$ corresponde à
Alternativa D

×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
Dê a expressão da altura de um triângulo equilátero em função da medida do lado do triângulo.

 



resposta: triângulo equilátero de lado l

Resolução:
No triângulo da figura:

$\;\ell^2 = h^2 + (\frac{\ell}{2})^2 \;\;\Longleftrightarrow \;\; h^2 = \ell ^2 - \frac{\ell ^2}{4} \; = \; \frac{3 \ell^2}{4}\;\Longrightarrow\;$

ou $\;\; h = \frac{\ell \sqrt{3}}{2}$


Resposta: $\;\;h = \frac{\ell \sqrt{3}}{2}$
×
A altura de um triângulo equilátero de lado 4 cm é:
a)$\;4 \;cm\;$ b)$\;2 \;cm\;$ c)$\;4\sqrt{3} \;cm\;$
d)$\;2\sqrt{3} \;cm\;$e) $\;1\; cm\;$

 



resposta: D
×
Veja exercÍcio sobre:
geometria plana
semelhança de triângulos
Teorema de Tales