exercícios de matemática

buscar exercício


(CESCEM - 70) Do enunciado abaixo:

"A condição necessária e suficiente para que uma reta seja paralela a um plano que não a contém é que ela seja paralela a uma reta desse plano."

Podemos concluir que:

a) A condição ser suficiente significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
b) A condição ser necessária significa que: toda reta paralela a uma reta de um plano é paralela a este plano.
c) A condição ser suficiente significa que: todo plano paralelo a uma reta conterá todas as retas paralelas à reta dada.
d) A condição ser necessária significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
e) Nenhuma das anteriores.


 


(MACKENZIE - 1973) Marque uma das alternativas:

a) se existir um(a) e um(a) só
b) se existirem exatamente dois (duas) distintos(as)
c) se existir um número finito porém maior que 2
d) se existirem infinitos(as)
e) se não existir nenhum(a)
de modo que as afirmações que se seguem fiquem corretas:

reta perpendicular a duas retas reversas.
plano paralelo a duas retas reversas.
dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra.
retas e reversas, plano por e equidistante dos pontos e .


 


(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p .
Então:

a) se C dividir o segmento em partes iguais a , então o segmento é perpendicular a p
b) se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento é perpendicular a p .
c) se ABC for um triângulo equilátero e D for equidistante de A , B e C , então implica que o segmento é perpendicular a p .
d) se ABC for um triângulo equilátero e o segmento for perpendicular a p , então D é equidistante de A , B e C .
e) nenhuma das respostas anteriores.


 


(MACKENZIE - 1979) Considere as afirmações:

   I - Se uma reta é paralela a dois planos, então estes planos são paralelos.
  II - Se dois planos são paralelos, toda reta de um é paralela a uma reta do outro.
 III - Se duas retas são reversas, então existe uma única perpendicular comum a elas.
Então:
a) todas são verdadeiras.
b) somente a II é verdadeira.
c) somente a III é verdadeira
d) somente a I é verdadeira.
e) somente II e III são verdadeiras.


 


(MACKENZIE - 1979) O triângulo retângulo em e o paralelogramo situam-se em planos distintos. Então, a afirmação "MN e QR são segmentos ortogonais":

a) é sempre verdadeira.
b) não pode ser analisada por falta de dados.
c) é verdadeira somente se .
d) nunca é verdadeira.
e) é verdadeira somente se .


 


(ITA - 1982) A figura hachurada abaixo é a seção transversal de um sólido de revolução em torno do eixo x . A parte tracejada é formada por um setor circular de raio igual a 1 e ângulo igual a 60° . O segmento de reta AB é paralelo ao eixo x . A área da superfície total do sólido mede:

a)
b)
c)
d)
e)


 


(PUC-SP - 1980) Se r e s são retas reversas, então pode-se garantir que:

a) todo plano que contém r também contém s .
b) existe um plano que contém r e é perpendicular a s .
c) existe um único plano que contém r e s .
d) existe um plano que contém r e é paralelo a s .
e) toda reta que encontra r encontra s .


 


(MACKENZIE - 1980) Considerando as afirmações abaixo, assinale a alternativa correta:

   I - Se uma reta é paralela a dois planos, então esses planos são paralelos.
  II - Dadas duas retas reversas, sempre existe reta que se apóia em ambas.
 III - Se um plano é perpendicular a dois planos secantes, então é perpendicular à interseção desses planos.
a) Somente a afirmação I é verdadeira.
b) Somente a afirmação II é verdadeira.
c) São verdadeiras as afirmações II e III, apenas.
d) Todas as afirmações são verdadeiras.
e) Nenhuma afirmação é verdadeira.


 


(FUVEST - 1980) São dados cinco pontos não coplanares , , , , . Sabe-se que é um retângulo, e . Pode concluir que são perpendiculares as retas:

a) e
b) e
c) e
d) e
e) e



 


(PUC-SP - 1981) Dois planos e se cortam na reta e são perpendiculares a um plano . Então:

a) e são perpendiculares.
b) é perpendicular a .
c) é paralela a .
d) todo plano perpendicular a encontra .
e) existe uma reta paralela a e a .



 


(PUC-SP - 1980) Assinale a afirmação verdadeira:

a) Dois planos paralelos a uma reta são paralelos entre si.
b) Dois planos perpendiculares a uma reta são perpendiculares entre si.
c) Duas retas perpendiculares a um plano são paralelas entre si.
d) Duas retas paralelas a um plano são paralelas entre si.
e) Dois planos perpendiculares a um terceiro são perpendiculares entre si.


 


(ITA - 1973) Sejaa projeção do diâmetro de um círculo de raio sobre a reta tangente por um ponto deste círculo. Seja a razão da área total do tronco do cone gerado pela rotação do trapézio ao redor da reta tangente e área do círculo dado. Qual é o valor de para que a medida do segmento seja igual à metade do raio ?

a)
b)
c)
d)
e) nenhuma das respostas anteriores


 


(UFBA - 1981) Sendo e dois planos e e duas retas, tais que , e , então e podem ser:

a) paralelas a .
b) perpendiculares a .
c) coincidentes.
d) oblíquas.
e) ortogonais.


 


(FUVEST - 1982) Sejam r e s duas retas distintas. Podemos afirmar que sempre:

a) existe uma reta perpendicular a r e a s .
b) r e s determinam um único plano.
c) existe um plano que contém s e não intercepta r.
d) existe uma reta que é paralela a r e a s.
e) existe um plano que contém r e um único ponto de s .


 


(STA CASA - 1982) Na figura ao lado, tem-se o triângulo tal que está contido num plano , e os ângulos de vértices e medem, respectivamente, 70° e 60°. Se // , , , contém a bissetriz do ângulo e , então a medida do ângulo , assinalado é:

a) 165°b) 155°c) 145°d) 130°e) 120°


 


(UBERLÂNDIA - 1982) Das alternativas abaixo:

   I -Dois planos distintos perpendiculares a um terceiro são paralelos entre si.
  II -Se dois planos são perpendiculares, então toda reta de um forma um ângulo reto com qualquer reta do outro.
 III -Distância entre duas retas é a distância entre um ponto qualquer de uma e a outra.
 IV - Se três retas são, duas a duas, reversas e não paralelas a um mesmo plano, então por qualquer ponto de uma passa reta que se apoia nas outras duas.
Pode-se afirmar que:

a) todas as alternativas são verdadeiras.
b) todas as alternativas são falsas.
c) apenas a alternativa I é falsa.
d) apenas a alternativa I é verdadeira.
e) apenas as alternativas I, II e III são verdadeiras.


 


(PUC-SP - 1982) Um triângulo isósceles , com e , tem o lado contido em um plano e o vértice a uma distância 18 de . A projeção ortogonal do triângulo sobre o plano é um triângulo:

a) retângulo.
b) obtusângulo.
c) equilátero.
d) isósceles, mas não equilátero.
e) semelhante ao triângulo .


 


(PUC-SP - 1979) A soma dos diedros de um triedro está compreendida entre:

a) 3 retos e 6 retos.
b) 1 reto e 2 retos.
c) 2 retos e 6 retos.
d) 2 retos e 5 retos.
e) 3 retos e 5 retos.


 


(PUC-SP - 1980) Qual é o poliedro regular que tem 12 vértices e 30 arestas?

a) hexaedro
b) octaedro
c) dodecaedro
d) icosaedro
e) tridecaedro


 


(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?

a) 5 b) 10c) 15
d) 18e) 24


 


(UFRS - 1981) Uma caixa tem 1 m de comprimento, 2 m de largura e 3 m de altura. Uma segunda caixa de mesmo volume tem comprimento metros maior do que o da anterior, largura metros maior do que a da anterior e altura metros menor que a da anterior. O valor de é:

a)
b)
c)
d)
e)


 


(UCMG - 1981) O volume, em litros, de um cubo de 5 cm de aresta é de:

a) 0,0125
b) 0,1250
c) 1,2500
d) 12,500
e) 125,00


 


(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:

a) 6 unidades.
b) 5 unidades.
c) 4 unidades.
d) 3 unidades.
e) 2 unidades.


 


(PUC-RS - 1980) Se "" é a medida da aresta de um tetraedro regular, então sua altura mede:

a)
b)
c)
d)
e)


 


(UCMG - 1981) O volume, em cm³, da figura formada por um cone e um cilindro circular reto, é:

a)
b)
c)
d)
e)


 


(UCMG - 1981) O raio da base de um cone de revolução é 10 cm, e a altura 30 cm. Se o raio aumentar 1 cm e a altura diminuir 3 cm, a razão entre o segundo volume e o primeiro é de:

a) 0,333b) 1,089c) 1,321
d) 2,021e) 3,000


 


(CESESP - 1986) Pretende-se contruir um tanque com a forma e dimensões da figura ao lado. Sabendo-se que o hemisfério, o cilindro circular reto e o cone circular reto, que constituem o referido tanque, têm igual volume, assinale, dentre as alternativas abaixo, a única que corresponde às relaçoes existentes entre as dimensões indicadas.

a) R = h = H
b) 3R = h = 3H
c) 4R = h = 3H
d) 2R = h = 3H
e) h = 3R = H


 


(ITA - 2004) Considere um cilindro circular reto, de volume igual a , e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de , então, a área lateral da pirâmide mede, em ,

a)
b)
c)
d)
e)


 


(ITA - 2004) A área total da superfície de um cone circular reto, cujo raio da base mede R cm , é igual à terça parte da área de um círculo de diâmetro igual ao perímetro da seção meridiana do cone. O volume deste cone, em cm³ , é igual a

a)
b)
c)
d)
e)


 


Para um paralelepípedo reto retângulo de dimensões 3 cm , 4 cm e 5 cm , calcular:
a) A área total
b) A medida da diagonal

 


Determinar o volume de um paralelepípedo reto retângulo de dimensões 3 cm, 4 cm e 5 cm.

 


(UnB - 1982) Na figura abaixo, é dado um cubo de cm de aresta, cuja base está sobre um plano . O plano é paralelo à reta que contém a aresta . Forma com um ângulo de e "corta" do cubo um prisma de base triangular cuja base é o triângulo .
O segmento tem 5 cm de comprimento.
Determinar o volume do prisma .


 


Determinar a área lateral do prisma triangular regular, cuja aresta da base mede 5 cm e a altura 10 cm .

 


Determinar a área total e o volume do prisma triangular regular, cuja aresta da base mede 5 cm e a altura 10 cm.

 


(ITA - 2012) As retas e são concorrentes no ponto , exterior a um círculo . A reta tangencia no ponto e a reta intercepta nos ponto e diametralmente opostos. A medida do arco é e mede cm. Determine a área do setor menor de definido pelo arco .

 


(ITA - 1990) Seja V o vértice de uma piramide com base triangular ABC. O segmento AV, de comprimento unitário, é perpendicular à base. Os angulos das faces laterais, no vértice V, são todos iguais a 45 graus. Deste modo, o volume da piramide será igual a:

a)
b)
c)
d)
e) n.d.a


 


(ITA - 1990) Considere um prisma triangular regular cuja aresta da base mede x cm. Sua altura é igual ao menor lado de um triangulo ABC inscritível num círculo de raio x cm. Sabendo-se que o triangulo ABC é semelhante ao triangulo de lados 3 cm , 4 cm e 5 cm, o volume do prisma em cm³ é:

a) b)
c) d)
e)   n.d.a


 


(FUVEST - 2017) O paralelepípedo retorretângulo ABCDEFGH, representado na figura, tem medida dos lados AB = 4, BC = 2 e BF = 2.
O seno do ângulo HÂF é igual a
a) b) c)
d)
e)

 


(FUVEST - 1977) A figura é a planificação de um poliedro convexo (A = B = C = D ; E = F). Calcule o seu volume.

 


(FUVEST - 1980) A aresta do cubo abaixo mede 2 e BP = 3. Calcule PC e PD.

 


(FUVEST - 2009) A figura representa uma pirâmide ABCDE, cuja base é o retângulo ABCD. Sabe-se que:



Nessas condições, determine:
a) A medida de .
b) A área do trapézio .
c) O volume da pirâmide .