Lista de exercícios do ensino médio para impressão
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro

 



resposta:
secção meridiana do cilindro

Considerações:

Eixo do cilindro é a reta que passa pelos centros das bases do cilindro.
Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro.
Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases.
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.

A secção meridiana de um cilindro equilátero é um quadrado.

prisma triangular regular com cilindro equilátero inscrito

Resolução:

1. Observando atentamente a figura, temos:
$\;A_{\mbox{base}}\;$
=
área da base do prisma triangular
$\;V_C\;$
=
o volume do cilindro
$\;\rightarrow\;V_C\;=\;\pi\centerdot R^{\large 2}\;=\;\pi\centerdot(3)^{\large 2}$
$\;V_P\;$
=
o volume do prisma triangular
$\;\rightarrow\;V_P\;=\,A_{\mbox{base}}\centerdot h\;=\;A_{\mbox{base}}\centerdot 6\;$
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$.
$\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.

A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita

Perímetro da base
=
$\;p\;=\,(a\,-\,s)\,+\,a\,+\,(a\,+\,s)\;=\;3\centerdot a$
Semiperímetro da base
=
$\;\dfrac{p}{2}\;=\;\dfrac{3\centerdot a}{2}$
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais:
Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Alternativa A
×
Name:
Comment:


lista de exercícios em pdf disponíveis:
mais...