Lista de exercícios do ensino médio para impressão
(UFG) Se $\,A\;=\;\begin{pmatrix} 1& 1\; \\ 1& 1 \end{pmatrix}\phantom{X}$ então os valores de $\,{\large \lambda}\,$, tais que o determinante da matriz $\,A^{\large 2}\,-\,{\large \lambda}I_2\,$ é igual a zero, são:
a)
somente $\,{\large \lambda}\,=\,0\,$
b)
$\,{\large \lambda}\,=\,0\,$ ou $\,{\large \lambda}\,=\,2\,$
c)
qualquer que seja $\,{\large \lambda}\,$ real
d)
$\,{\large \lambda}\,=\,4\,$ ou $\,{\large \lambda}\,=\,2\,$
e)
$\,{\large \lambda}\,=\,0\,$ ou $\,{\large \lambda}\,=\,4\,$

 



resposta: Alternativa E
Resolução:
$\,I_2\,$ é representação da matriz identidade de ordem 2, a saber $\;\begin{pmatrix} 1& 0\; \\ 0& 1 \end{pmatrix}\phantom{X}$.
$\,A^{\large 2}\,= \;\begin{pmatrix} 1& 1\; \\ 1& 1 \end{pmatrix}\,\centerdot\,\begin{pmatrix} 1& 1\; \\ 1& 1 \end{pmatrix}\;\Rightarrow\;$ $\;\begin{pmatrix} 1+1& 1+1\; \\ 1+1& 1+1 \end{pmatrix}\phantom{X}\;\Rightarrow\;$ $\;\begin{pmatrix} 2& 2\; \\ 2& 2 \end{pmatrix}$
$\,{\large \lambda}I_2\;=\;{\large \lambda}\centerdot\begin{pmatrix} 1& 0\; \\ 0& 1 \end{pmatrix}\;=\;$ $\begin{pmatrix} {\large \lambda}& 0\; \\ 0& {\large \lambda} \end{pmatrix}\;$
Então
$\,A^2 \,-\,\lambda I_2\;=\;\begin{pmatrix} 2& 2\; \\ 2& 2 \end{pmatrix}\, - \,\begin{pmatrix} {\large \lambda}& 0\; \\ 0& {\large \lambda} \end{pmatrix}\,=$ $\,\begin{pmatrix} 2-{\large \lambda}& 2\; \\ 2& 2-{\large \lambda} \end{pmatrix}$
O determinante de $\,\begin{pmatrix} 2-{\large \lambda}& 2\; \\ 2& 2-{\large \lambda} \end{pmatrix}\,$ é $\,(2\,-\,{\large \lambda})^{\large 2}\,-\,2^{\large 2}\,=$ $\,(2\,-\,{\large \lambda})^{\large 2}\,-\,4\,=\,0\Rightarrow\;$ $\,2^2\,-\,4{\large \lambda}\,+\,{\large \lambda}^2\,-\,4\,=\,0\;\Rightarrow\;$ ${\large \lambda}^2\,-\,4{\large \lambda}\,=\,0\;\Rightarrow\,$ $\,\left\{\begin{array}{rcr} &{\large \lambda}\,=\,0\;\mbox{ ou } \\ &{\large \lambda}\,=\,4\phantom{XX} \\ \end{array} \right.\,$
×
Name:
Comment:


lista de exercícios em pdf disponíveis:
mais...