Lista de exercícios do ensino médio para impressão
Resolver pela "regra de Cramer" o sistema:$\,\left\{\begin{array}{rcr} \;\;x\,+\phantom{X}y\,+\,2z\,=\,9\;& \\ \;\;x\,+\;2y\,+\,\;\;z\,=\,8\;& \\ 2x\,+\phantom{X}y\,+\;\;z\,=\,7\;& \\ \end{array} \right.\,$

 



resposta:
Resolução:
Passo 1:
Calcular o valor do determinante D da matriz 3x3 formada pelos coeficientes de x, y e z
$\;D\;=\,\begin{vmatrix} 1 & 1 & 2\; \\ 1 & 2 & 1 \; \\ 2 & 1 & 1 \;\end{vmatrix}\;=\;-4$
Passo 2:
2a. Calcular o valor do determinante Dx da matriz 3x3 formada substituindo-se a coluna com os coeficientes de x por uma coluna com os termos independentes
$\;D_x\;=\,\begin{vmatrix} 9 & 1 & 2\; \\ 8 & 2 & 1 \; \\ 7 & 1 & 1 \;\end{vmatrix}\;=\;-4$
2b. Calcular o valor do determinante Dy da matriz 3x3 formada substituindo-se a coluna com os coeficientes de y por uma coluna com os termos independentes
$\;D_y\;=\,\begin{vmatrix} 1 & 9 & 2\; \\ 1 & 8 & 1 \; \\ 2 & 7 & 1 \;\end{vmatrix}\;=\;-8$
2c. Calcular o valor do determinante Dz da matriz 3x3 formada substituindo-se a coluna com os coeficientes de z por uma coluna com os termos independentes
$\;D_z\;=\,\begin{vmatrix} 1 & 1 & 9\; \\ 2 & 2 & 8 \; \\ 2 & 1 & 7 \;\end{vmatrix}\;=\;-12$
Passo 3:
(calcular x)
$\;x\,=\,\dfrac{D_x}{D}\,=\,\dfrac{-4}{-4}\,=\,1\;$
(calcular y)
$\;y\,=\,\dfrac{D_y}{D}\,=\,\dfrac{-8}{-4}\,=\,2\;$
(calcular z)
$\;z\,=\,\dfrac{D_z}{D}\,=\,\dfrac{-12}{-4}\,=\,3\;$
V = {(1, 2, 3)}

×
Name:
Comment:


lista de exercícios em pdf disponíveis:
mais...