nenhum resultado. Tente uma nova busca com outros termos.
(MAUÁ) Um cilindro circular reto, de raio R e altura h = 2R , é cortado por um plano paralelo ao seu eixo. Sendo R/2 a distância do eixo ao plano secante, calcule o volume do menor segmento cilíndrico resultante desta secção.
Um monumento tem o pedestal em forma de tronco de pirâmide quadrada, onde o apótema tem 6 m e as bases tem lados de 4 m e 2 m. Qual o volume de concreto usado para fazer o pedestal?
resposta:
Conforme a figura, no triângulo hachurado ABC temos:
● o segmento AB é o apótema lateral com medida 6 m, ● o segmento BC é 1 m, igual a metade da diferença entre a medida dos lados da base menor e da base maior e ● e AC é altura do pedestal.
Pelo teorema de Pitágoras:
$\;(AB)^2\,=\,(BC)^2\,+\,(AC)^2\phantom{X}$ $\;(AC)^2\;=\;36\;-\;1\;\Longrightarrow\;\;(AC)\;=\;\sqrt{\;35\;}\phantom{X}$ Portanto a altura do tronco de pirâmide (pedestal) é $\,\sqrt{\,35\,}\,m\,$
$\;A_b\;=\;$ Área da base menor $\;= 2^2 = 4 m^2\;$ $\;A_B\;=\;$ Área da base maior $\;= 4^2 = 16 m^2\;$ $\;V_{tronco}\;=\;\dfrac{\;h\;}{\;3\;}\left({A_b\;+\;\sqrt{\;A_b\;\centerdot\;A_B\;}\;+\;A_B}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left( 4\;+\;\sqrt{\;4\;\centerdot\;16\;}\;+\;16\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;\sqrt{\;64\;}\right)\phantom{X}$ $\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;8\right)\phantom{X}$
(USP) A altura de um tetraedro regular de aresta $\phantom{X}\ell\phantom{X}$ vale:
a)
$\,\dfrac{\,\ell\,\sqrt{\,6\,}\,}{\,3\,}\,$
b)
$\,\dfrac{\,\ell\,\sqrt{\,3\,}\,}{\,2\,}\,$
c)
$\,\ell\,\sqrt{\,3\,}\phantom{X}$
d)
$\,\ell\,\phantom{\dfrac{X}{X}}$
e)
$\,\ell\,\sqrt{\,2\,}\,$
resposta:
altura do tetraedro regular:
Na figura, o apótema "g" do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$: $\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$ O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo. A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então: $\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$ $\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$ Assim temos: $\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$ Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
Um prisma triangular regular tem as arestas da base medindo 5 cm e aresta lateral igual a 7 cm . Calcular a área da base, a área lateral, a área total e o volume.
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,k\pi\;$ ou $\;x\,=\,\frac{3\pi}{4}\,+\,k\pi\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{3\pi}{4}\,+\,k\pi\;$ ou $\;x\,=\,k\pi\rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{3}\,+\,k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;ou\;x\,=\,\frac{3\pi}{4}\,+\,k\pi;\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\,\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;ou\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;\rbrace\,$
(MAUÁ - 1977) Dada a equação $\phantom{X}(sen\,x\,+\,cos\,y)(sec\,x\,+\,cossec\,y)\,=\,4\phantom{X}$:
a) resolva-a se $\phantom{X}x\,=\,y\phantom{X}$ b) resolva-a se $\phantom{X}sen\,x\,=\,cos\,y\phantom{X}$
resposta: a) x = y = π/4 + kπb) x = π/4 + kπ e y + x = π/2 + 2kπ ×
Determinar os ângulos internos de um triângulo ABC sabendo que $\phantom{X}cos(A\,+\,B)\,=\,\dfrac{\,1\,}{\,2\,}\phantom{X}$ e $\phantom{X}sen(B\,+\,C)\,=\,\dfrac{\,1\,}{\,2\,}\phantom{X}$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pm\,\frac{\pi}{12}\,+\,k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,2k\pi \; ou\; x\,=\frac{2k\pi}{3}\, \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{3}\,+\,2k\pi\;ou\;,x\,=\,-\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{4}\,+\,2k\pi \rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pm\,\frac{\pi}{6}\,+\,2k\pi \, ou \, x\,=\,\pm\,\frac{5\pi}{6}\,+\,2k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{2}\,+\,k\pi\;ou\;x\,=\,\pi\,+\,2k\pi \, \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{2}\,+\,k\pi\;ou\;x\,=\,\pi\,+\,2k\pi \, \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pi + 2k\pi \; ou \; x\,=\,\pm\,\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$
Determinar os ângulos internos de um triângulo sabendo que estão em progressão aritmética e que o seno da soma do menor ângulo com o ângulo médio é $\phantom{X}\dfrac{\,\sqrt{\,3\,}\,}{\,2\,}\phantom{X}$
Determinar o valor de $\phantom{X}x\;,\;\,x\,\in\,{\rm I\!R}\phantom{X}$ nas seguintes igualdades:
a) $\,sen\,5x\,=\,sen\,3x\phantom{XXXXX}$ b) $\,sen\,3x\,=\,sen\,2x\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,k\pi\,$ ou $x\,=\,\frac{\pi}{8}\,+\,\frac{k\pi}{4} \rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,2k\pi\,$ ou $x\,=\,\frac{\pi}{5}\,+\,\frac{2k\pi}{5}\rbrace\,$ ×
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{\pi}{12}\,+\,k\pi\,$ ou $x\,=\,\frac{5\pi}{12}\,+\,k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{\pi}{12}\,+\,\frac{2k\pi}{3}\,$ ou $x\,=\,\frac{\pi}{4}\,+\,\frac{2k\pi}{3}\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{2\pi}{3}\,+\,2k\pi\,$ ou $x\,=\,\pi\,+\,2k\pi\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,2k\pi\,$ ou $x\,=\,\frac{\pi}{3}\,+\, \frac{2k\pi}{3}\rbrace\,$ ×
(FEFAAP - 1977) Determinar os valores de x que satisfazem a equação $\phantom{X}4\,sen^{\large\,4}\,x\,-\,11\,sen^{\large\,2}\,x\,+\,6\,=\,0\phantom{X}$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{7}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{6\pi}{7}\,+\,2k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\pm \frac{\pi}{4}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{3\pi}{4}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{4}\,+\,2k\pi\,\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{3\pi}{2}\,+\,2k\pi\,\rbrace\,$ e) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{3\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ f) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,2k\pi - \frac{\pi}{6}\,\rbrace\,$ g) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ h) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ i) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;$ ou $\,x\,=\,\frac{\pi}{2}\,+\,2k\pi\,\rbrace\,$ ×
Resolver em $\,{\rm I\!R}\,$ as seguintes equações:
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,- \frac{\pi}{6}\,+\,2k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\,\pi\;$ ou $\,x\,=\,\frac{\pi}{2}\,+\,2k\pi\,\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ d)$\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{-\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\,\rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{2\pi}{3}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{\pi}{3}\,+\,2k\pi \rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{3}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{2}\,+\,2k\pi \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{3\pi}{2}\,+\,2k\pi\,\rbrace\,$ e) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{6}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi \rbrace\,$
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}tg\,2x\;=\;1\phantom{X}$
resposta:
Devemos notar que se a tangente de 2x é 1, então $\,tg 2x = tg\,\dfrac{\,\pi\,}{\,4\,}\,$ Temos então: $\,2x\,=\,\dfrac{\,\pi\,}{\,4\,}\,+\,k\pi\;\Rightarrow$ $\;x = \dfrac{\,\pi\,}{\,8\,}\,\,+\,\dfrac{k\pi}{2},\;k\,\in\,\mathbb{Z}\,$ O conjunto solução então:
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}cos\,2x\;=\;0\phantom{X}$
resposta:
Devemos notar que se o cosseno de 2x é zero, então $\,2x = \pm\,\dfrac{\,\pi\,}{\,2\,}\,+\,2k\pi\;\Rightarrow$ $\;x = \pm\,\dfrac{\,\pi\,}{\,4\,}\,\,+\,k\pi,\;k\,\in\,\mathbb{Z}\,$ O conjunto solução então:
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}cos\,x\;=\;-\,\dfrac{\;\sqrt{\,3\,}\;}{\;2\;}\phantom{X}$
resposta:
Devemos notar que $\,-\,\dfrac{\,\sqrt{\,3\,}\,}{\,2\,}\,=\,cos\,\dfrac{\,5\pi\,}{\,6}\,$, então a equação torna-se $\phantom{X}cos\,x\;=\;\,cos\,\dfrac{\,5\pi\,}{\,6}\phantom{X}$ $\,\left\{\begin{array}{rcr} x\,= \pm\,\dfrac{\,5\pi\,}{\,6\,}\,+\,2\,k\pi \\ \,k\,\in\,\mathbb{Z}\phantom{XXXX} \\ \end{array} \right.\,$ Donde obtemos o conjunto solução:
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}sen\,x\;=\;\dfrac{\;1\;}{\;2\;}\phantom{X}$
resposta:
Devemos notar que $\,\dfrac{\,1\,}{\,2\,}\,=\,sen\,\dfrac{\,\pi\,}{\,6}\,$, então a equação torna-se $\phantom{X}sen\,x\;=\;\,sen\,\dfrac{\,\pi\,}{\,6}\phantom{X}$ $\,\left\{\begin{array}{rcr} x\,= & \dfrac{\,\pi\,}{\,6\,}\,+\,2\,k\pi \phantom{XXXX} \\ ou \\ x\,= & \left(\,\pi\,-\,\dfrac{\,\pi\,}{\,6\,}\,\right)\,+\,2\,k\pi \\ \end{array} \right.\,$ $\,k\,\in\,\mathbb{Z}\,$ Donde obtemos o conjunto solução:
$\,\mathbb{S}\,=\,\lbrace\,x\,\in\,{\rm I\!R}\phantom{X}|\phantom{X}x\,=\,\dfrac{\pi}{6}\,+\,2k\pi\;$ ou $\;x\,=\,\dfrac{5\pi}{6}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\rbrace\,$ ×
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}sen\,x\;=\;sen\,\dfrac{\;\pi\;}{\;5\;}\phantom{X}$
resposta:
1. x pode ser: $\,x\,=\,\dfrac{\,\pi\,}{5}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\,$ ou 2. x pode ser também: $\,x\,=\,\left(\pi\,-\,\dfrac{\,\pi\,}{5}\right)\,+\,2k\pi\,=\,$$\dfrac{\,4\pi\,}{5}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\,$
Unindo-se as extremidades dos arcos da forma $\phantom{X}\pm \dfrac{\,\pi\,}{\,3\,}\,+\,\dfrac{\,n\pi\,}{\,2\,}\phantom{x} (n\;\in\;\mathbb{Z})\phantom{X}$ obtém-se:
Construir o gráfico da função $\,f\,:\,{\rm I\!R}\rightarrow\,{\rm I\!R}\,$ definida por $\phantom{X}f(x) = 1 + \operatorname{cos}\left(\,2x\,-\,\dfrac{\,\pi\,}{\,4\,}\right)\phantom{X}$
Determinar o conjunto domínio, o conjunto imagem e o período da função $\phantom{X}y\,=\,2\,+\,3\operatorname{cos}\left(2x\,+\,\dfrac{\,\pi\,}{\,3\,}\,\right)\phantom{X}$.
Com relação à função $ \,f:\,{\rm\,I\!R}\,\rightarrow\,{\rm\,I\!R}\, $ definida por $ \phantom{X}f(x)\,=\,1\,+\,sen\,3x\phantom{X} $ forneça:
a) o conjunto imagem b) o período
resposta: a)
O valor do seno varia entre -1 e 1, inclusive. Então o seno de 3x também varia entre -1 e 1. $\phantom{X}\;-1\;\leqslant\;sen\;3x\;\leqslant\;1\phantom{X}\;$ Vamos somar 1 a cada membro da expressão acima: $\phantom{X}\;0\;\leqslant\;1\;+\;sen\;3x\;\leqslant\;2\phantom{X} $ $\phantom{X}\;0\;\leqslant\;f(x)\;\leqslant\;2\phantom{X} $ Como f(x) varia entre 0 e 2 (inclusive), o conjunto imagem é $\,Im\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,0\,\leqslant\,x\,\leqslant\,2\,\rbrace\,$ ou
Im = [0,2] b)
Um arco 3x executa uma volta completa no ciclo trigonométrico quando o valor de 3x varia entre 0 e 2π . $\phantom{X} 0\;\leqslant\;3x\;\leqslant\;2\pi\phantom{X}\Rightarrow$ $\phantom{X} 0\;\leqslant\;x\;\leqslant\;\dfrac{\;2\pi\;}{3}\phantom{X}$ Então um período da função inicia-se em 0 e termina em $\,\dfrac{\;2\pi\;}{3}\,$.
Calcular cos(a + b), sendo dado sen a = -3/5 e cos b = 1/3 , sendo que a e b estão no intervalo $\phantom{X}\left]\,\dfrac{\,3\,\pi\,}{2}\,;\,2\pi\,\right[\phantom{X}$
resposta:
Lembramos que cos(a + b) = cos a . cos b - sen a . sen b Então: Passo 1 - Calcular o cos a $\,cos\,a\,=\,+\,\sqrt{\,1\,-\,sen^2\,a\,}\,=\,\dfrac{\,4\,}{5}\,$ Passo 2 - Calcular o sen b $\,sen\,b\,=\,-\,\sqrt{\,1\,-\,cos^2\,b\,}\,=\,\dfrac{\,-\,2\,\sqrt{\,2\,}\,}{3}\,$ Passo 3 - Calcular o cos (a + b) $\,cos\,(a\,+\,b)\,=\,cos\,a\,\centerdot\,cos\,b\,-\,sen\,a\,\centerdot\,sen\,b\,=$ $\dfrac{\,4\,}{5} \centerdot \dfrac{\,1\,}{3}\,-\,(-\dfrac{\,3\,}{5})\, \centerdot\,(-\,\dfrac{\,2\,\sqrt{\,2\,}}{3})\,=\,$ $\dfrac{4}{\,15\,} - \dfrac{\,6\,\sqrt{\,2\,}}{15}\,=$
Lembramos que sen(a + b) = sen a . cos b + sen b . cos a Então: $\,sen\,75^o\,=\,$ $\,sen\,(45^o\,+\,30^o)\,=\,$ $\,sen\,45^o\,\centerdot\,cos\,30^o\,+\,cos\,45^o\,\centerdot\,sen\,30^o\,=\,$ $\,\dfrac{\,\sqrt{\,2\,}\,}{2}\,\centerdot\,\dfrac{\,\sqrt{\,3\,}\,}{2}\,+\,\dfrac{\,\sqrt{\,2\,}\,}{2}\,\centerdot\,\dfrac{\,1\,}{2}\,\,=\,$ $\dfrac{\,\sqrt{\,6\,}\,}{4}\,+\,\dfrac{\,\sqrt{\,2\,}\,}{4}\,$
No triângulo da figura são conhecidos os ângulos  = 60° e $\,\hat{B}\,$ = 75° e também o lado c = 13 m.
Pede-se: a) a medida em graus do ângulo C; b) a medida em metros dos lados a e b; c) a área do triângulo ABC em metros quadrados.
resposta:
Resolução: a) A soma dos ângulos internos de um triângulo qualquer é igual a 180°, então $ \phantom{X} \require{cancel}\hat{A}\,+\,\hat{B}\,+\,\hat{C}\,=\,180^o\;\Rightarrow $ $\;\hat{C}\,=\,180^o\,-\,(\hat{A}\,+\,\hat{B})\,=$ $\,180^o\,-\,135^o\,=\,45^o\;$
b) Pelo Teorema dos Senos temos que $\,\dfrac{b}{\,sen \hat{B}\,}\,=\,\dfrac{c}{\,sen \hat{C}\,}\,=\,\dfrac{a}{\,sen \hat{A}\,}\,$, então podemos concluir que $\,b\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{B}\,}{sen\,\hat{C}}\phantom{X}$ e $\phantom{X}a\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{A}\,}{sen\,\hat{C}}\,$ Lembrar que $\,sen(a\,+\,b)\,=$ $\,sen\,a\,\centerdot\,cos\,b\,+\,sen\,b\,\centerdot\,cos\,a\,$ $\,sen\,\hat{A}\,=\,sen75^o\,$ $=\,sen\,(45^o\,+\,30^o)\,=$ $\,sen\,45^o\,\centerdot\,sen\,30^o\,+\,sen\,30^o\,\centerdot\,sen\,45^o\,=\,$ $\dfrac{\,\sqrt{\,2\;}}{2}\,\dfrac{\,\sqrt{\,3\;}}{2} + \dfrac{\,\sqrt{\,3\;}}{2}\,\dfrac{\,\sqrt{\,2\;}}{2}\, =$ $ \dfrac{\,2\sqrt{\,6\;}}{4} = \dfrac{\,\sqrt{\,6\;}}{2}$ $\,sen\,\hat{B}\,=\,sen\,60^o\,=\,\dfrac{\,\sqrt{\,3\;}}{2}\,$ $\,sen\,\hat{C}\,=\,sen45^o\,=\,\dfrac{\,\sqrt{\,2\;}}{2}\,$
O ângulo sob o qual um observador vê uma torre duplica quando ele se aproxima 110 m e triplica quando se aproxima mais 50 m. Calcular a altura da torre.
Num triângulo ABC , o ângulo  é obtuso. Os lados AB e AC medem 3 e 4 , respectivamente. Então: a) BC < 4 b) BC < 5 c) BC > 7 d) 5 < BC < 7 e) nenhuma das anteriores é correta
Resolução: Passo 1 - converter 15 minutos em graus. 60°15' = 60° + 15' (I) mas 1° é o mesmo que 60' , portanto fazemos uma primeira regra de três simples $\,\left.\begin{array}{rcr} 1^o\,\longrightarrow\,60'\;& \\ x\,\longrightarrow\,15'\;& \\ \end{array} \right\}\,$ $\;\Rightarrow\,x\,=\,\dfrac{\,15'\,\centerdot\,1^o\,}{60'}\,$ $\,\Rightarrow \;x\,=\,0,25^o\;\,$ Então em (I) temos que 60°15' = 60° + 0,25° Passo 2 - converter 60,25 graus em radianos Sabendo que 180° é o mesmo que π radianos, fazemos uma segunda regra de três simples: $\,\left.\begin{array}{rcr} 180^o\,\longrightarrow\,\pi\;& \\ 60,25^o\,\longrightarrow\,y\;& \\ \end{array} \right\}\,$ $\;\Rightarrow\,y\,=\,\dfrac{\,60,25^o\,\times\,3,14\,}{180^o}\,$ $\,\Rightarrow \;y\,=\,1,05\;\,$ Resposta:
Resolução: Sabendo que 180° correspondem a π radianos, escrevemos uma regra de três simples: $\,\left.\begin{array}{rcr} 180^o\,\longrightarrow\,\pi\;& \\ 120^o\,\longrightarrow\,x\;& \\ \end{array} \right\}\,$ $\;\Rightarrow\,x\,=\,\dfrac{\,120^o\,\centerdot\,\pi\,}{180^o}\,$ $\,\Rightarrow \boxed{\;x\,=\,\dfrac{\,2\pi\,}{\;3\;}\;}\,$
Sendo $\,x\,$ um arco do quarto quadrante, qual o sinal da expressão $\phantom{X}y\,=\,\dfrac{\,cossec\,x\,\centerdot\,cossec\,(x\,+\,\pi)\,}{\,cossec\,\left(x\,+\,\dfrac{\,\pi\,}{\,2\,}\right)\,\centerdot\,cos\,x}\phantom{X}$
Avaliar se são possíveis as seguintes igualdades: a) $\,cossec\,x\,=\,0\phantom{X}$ e b) $\,cossec\,x\,=\,2\,$
resposta: a) impossível, não existeb) possível, existe. ×
Avaliar se são possíveis as seguintes igualdades: a) $\,sec\,x\,=\,0\phantom{X}$ e b) $\,sec\,x\,=\,-2\,$
resposta: a) impossível, não existeb) possível, existe. ×
Qual é o sinal da expressão $\phantom{X}y\,=\,\dfrac{\,sec\,x\,\centerdot\,tg\,x\,\centerdot\,sen\,x\,\,}{\,cos\,\left(x\,+\,\dfrac{\,\pi\,}{\,2\,}\,\right)\,}\phantom{X}$, sendo $\,0\,\lt\,x\,\lt\,\dfrac{\,\pi\,}{\,2\,}\,$
Sendo $\phantom{X}x\phantom{X}$ um arco do 3º quadrante , qual o sinal da expressão $\phantom{X}y\,=\,\dfrac{\,tg\,\left(\,x\,+\,\dfrac{\,\pi\,}{\,2\,}\,\right)\,\centerdot\,cotg\,\left(\,x\,+\,\dfrac{\,\pi\,}{\,2\,}\,\right)\,}{\,cotg\,x\,\centerdot\,cotg\,(x\,+\,\pi)\,}\phantom{X}$
a) Para todo arco $\,x\,$ real, existe o arco $\phantom{X}\boxed{\; x'\,=\,\pi\,-\,x\;}\phantom{X}$ cuja imagem é simétrica à em relação ao
b) Para todo arco $\,x \in {\rm I\!R}\,$ existe o arco $\phantom{X}\boxed{\; x'\,=\,x\,-\,\pi\,\;}\phantom{X}$ cuja imagem é simétrica à em relação à
c) Para todo arco $\,x\,$ real, existe o arco $\phantom{X}\boxed{\; x'\,=\,2\pi\,-\,x\;}\phantom{X}$ cuja imagem é simétrica à em relação ao
d) Para todo arco $\,x \in {\rm I\!R}\,$ existe o arco $\phantom{X}\boxed{\; x'\,=\,\dfrac{\,\pi\,}{\,2\,}\,-\,x\,\;}\phantom{X}$ cuja imagem é simétrica à em relação à
resposta: a) imagem de $\,x\,$ - eixo dos senos b) imagem de $\,x\,$ - origem dos eixos c) imagem de $\,x\,$ - eixo dos cossenos d) imagem de $\,x\,$ - reta bissetriz do primeiro quadrante
Sabe-se que $\,sen\,\dfrac{\,4\pi\,}{\,9\,}\,=\,a\,$
a)
Qual o sinal de $\,a\,$? Justifique.
b)
Calcule, em função de $\,a\,$, $\,sen\,\dfrac{\,5\pi\,}{\,9\,}\,$.
c)
Calcule $\,sen\,\dfrac{\,\pi\,}{\,18\,}\;$ e $\;cos\,\dfrac{\,\pi\,}{\,18\,}\;$
resposta: a) positivo porque o arco $\,\frac{4\pi}{9}\,$ pertence ao primeiro quadrante $\,0\,\lt\,\frac{4\pi}{9}\,\lt\,\frac{\pi}{2}\,$ b)$\,a\,$ c)$\,sen\frac{\pi}{18}\,=\,\sqrt{1\,-\,a^2}\,$ e $\,cos\frac{\pi}{18}\,=\,a\,$ ×
Calcule o valor de a) $\,sen^2\,70^o\,+\,cos^2\,100^o\,$ b) $\,sen^2\,55^o\,+\,cos^2\,55^o\,$
Calcule o valor da expressão $\phantom{X}y\,=\,3\,\centerdot\,tg\,\dfrac{\,\pi\,}{4}\,-\,2\,\centerdot\,tg\,\dfrac{\,\pi\,}{3}\,\centerdot\,tg\,\dfrac{\,\pi\,}{6}\,-\,tg\,\dfrac{\,3\pi\,}{4}\phantom{X}$
Determine o sinal da expressão $\phantom{X}y\,=\,tg^2\,\dfrac{\,\pi\,}{\,5\,}\,\centerdot\,tg\,\dfrac{\,4\pi\,}{\,5\,}\,\centerdot\,tg\,\dfrac{\,6\pi\,}{\,5\,}\,\centerdot\,tg\,\dfrac{\,8\pi\,}{\,5\,}\phantom{X}$.
Se $\,cos\,x\,=\,\frac{\,2\,}{\,3\,}\phantom{X}$ e $\,x\,$ está no primeiro quadrante, determine $\,sen x\,$ e $\,sen \left(\frac{\,\pi\,}{\,2\,}\,-\,x\,\right)\,$
resposta: $\,\dfrac{\,\sqrt{\,5\,}}{\,3\,}\,$ e $\,\dfrac{\,2\,}{\,3\,}\,$ ×
Sendo $\,sen\,x\,=\,\frac{\,4\,}{\,5\,}\phantom{X}$ e $\phantom{X}\frac{\,\pi\,}{\,2\,}\,\lt\,x\,\lt\,\pi\,$, determine $\,cos\,x\,$.