Lista de exercícios do ensino médio para impressão

nenhum resultado.
Tente uma nova busca com outros termos.

Calcular a área lateral, a área total e o volume de um cone equilátero circunscrito a uma esfera de raio $\,r\,$.
esfera inscrita num cone equilátero

 



resposta: $\,A_{\text lat}\,=\,6\,\pi\,r^2\,$; $\,A_{\text total}\,=\,9\,\pi\,r^2\,$; $\,V_{\text olume}\,=\,3\,\pi\,r^3\,$
×
Na figura seguinte:
$\,\overline{PP'}\,$ é diâmetro da esfera de centro $\,O\,$, $\;M\,$ é o centro de uma secção plana perpendicular a $\,\overline{PP'}\,$. Temos também que $\,\overline{AP}\,=\,6\,cm\;$ e $\,\overline{AP'}\,=\,8\,cm\;$. Calcular a área do círculo de centro $\,M\,$.
esfera e secção plana

 



resposta: resposta
×
(FUVEST - 2002) Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado lado $\,4\,$ cm e altura $\,20\sqrt{\,3\,}\;$cm , com $\,\frac{\,2\,}{\,3\,}\,$ de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando um ângulo de 30° com o solo. (Veja a seção lateral abaixo). Determinar a altura h do nível da água em relaçao ao solo.
paralelepípedo tombado

 



resposta: h = 21 cm
×
(FUVEST - 2002) Determine as soluções da equação$\phantom{X}(2\operatorname{cos^2}\,x\;+\;3\operatorname{sen}\,x)(\operatorname{cos^2}\,x\;-\;\operatorname{sen^2}\,x)\,=\,0\phantom{X}$que estão no intervalo $\phantom{X}\left[0, 2\pi\right]\phantom{X}$

 



resposta: $\,\lbrace\,\frac{\,\pi\,}{4}\,,\,\frac{\,3\pi\,}{4},\,\frac{\,5\pi\,}{4},\,\frac{\,7\pi\,}{4},\,\frac{\,7\pi\,}{6},\,\frac{\,11\pi\,}{6}\,\rbrace\,$
×
(FUVEST - 2002) As raízes do polinômio p(x) = x³ - 3x² + m , onde m é um número real, estão em progressão aritmética. Determine:
a) o valor de m ;
b) as raízes desse polinômio.

 



resposta: a) m = 2; b) raízes $\,1\,-\,\sqrt{3},\,1\,e\,1\,+\,\sqrt{3}\,$
×
(FUVEST - 1998) Numa classe com vinte alunos as notas do exame final podiam variar de 0 a 100 e a nota mínima para aprovação era 70. Realizado o exame, verificou-se que oito alunos foram reprovados. A média aritmética das notas desses oito alunos foi 65, enquanto que a média dos aprovados foi 77. Após a divulgação dos resultados, o professor verificou que uma questão havia sido mal formulada e decidiu atribuir 5 pontos a mais para todos os alunos. Com essa decisão, a média dos aprovados passou a ser 80 e a dos reprovados 68,8.
a)
Calcule a média aritmética das notas da classe toda antes da atribuição dos cincos pontos extras.
b)
Com a atribuição dos cinco pontos extras, quantos alunos, inicialmente reprovados, atingiram nota para aprovação?

 



resposta: a) 72,2 b) 3
×
(FUVEST - 2001) Um dado, cujas faces estão numeradas de um a seis, é dito perfeito se cada uma das seis faces tem probabilidade 1/6 de ocorrer em um lançamento. Considere o experimento que consiste em três lançamentos independentes de um dado perfeito. Calcule a probabilidade de que o produto desses três números seja:
a) par;
b) múltiplo de 10.

 



resposta: a) 7/8 b) 1/3
×
(FUVEST - 2001) Na figura abaixo, tem-se um cilindro circular reto, onde A e B são os centros das bases e C é um ponto da intersecção da superfície lateral com a base inferior do cilindro. Se D é o ponto do segmento $\,\overline{BC}\,$, cujas distâncias a $\,\overline{AC}\,$ e $\,\overline{AB}\,$ são ambas iguais a d , obtenha a razão entre o volume do cilindro e sua área total (área lateral somada com as áreas das bases), em função de d .
cilindro

 



resposta: d/2
×
(FUVEST - 2001) No plano complexo, cada ponto representa um número complexo. Nesse plano, considere o hexágono regular, com centro na origem, tendo i, a unidade imaginária, como um de seus vértices.
a)
Determine os vértices do hexágono.
b)
Determine os coeficientes de um polinômio de grau 6, cujas raízes sejam os vértices do hexágono.

 



resposta: a) $\,\frac{\sqrt{3\,}\,}{2} + \frac{1}{2}i\,$; $\,-\,\frac{\sqrt{3\,}\,}{2} + \frac{1}{2}i\,$; $\,-\,\frac{\sqrt{3\,}\,}{2} - \frac{1}{2}i\,$; $\,-i\,$; $\,\frac{\sqrt{3\,}\,}{2} - \frac{1}{2}i\,$;
b) 1, 0, 0, 0, 0, 0, 1
×
(FUVEST - 1998) No quadrilátero ABCD, temos AD = BC = 2 e o prolongamento desses lados forma ângulo de 60°.
quadrilátero irregular
a)
Indicando por $\,\hat{A}\,$, $\,\hat{B}\,$, $\,\hat{C}\;$ e $\;\hat{D}\,$, respectivamente, as medidas dos ângulos internos do quadrilátero de vértices $\,A, B, C \;$ e $\;D\,$, calcule $\,\hat{A}\, + \,\hat{B}\;$ e $\;\hat{C}\, + \,\hat{D}\,$.
b)
Sejam $\,J\,$ o ponto médio de $\,\overline{DC}\,$, $\,M\,$ o ponto médio de $\,\overline{AC}\,$ e $\,N\,$ o ponto médio de $\,\overline{BD}\,$. Calcule $\,JM\,$ e $\,JN\,$.
c)
Calcule a medida do ângulo $\,M\hat{J}N\,$.

 



resposta: a) $\,\hat{A} + \hat{B} = 120^o\,$ e $\,\hat{D} + \hat{C} = 240^o\,$
b) JM = 1 e JN = 1
c) ⊾MJN = 60°
×
(FUVEST - 1998) No cubo de aresta 1, considere as arestas $\,\overline{AC}\;$ e $\;\overline{BD}\,$ e o ponto médio, $\,M\,$, de $\,\overline{AC}\;$.
a)
Determine o cosseno do ângulo $\,B\hat{A}D\,$.
b)
Determine o cosseno do ângulo $\,B\hat{M}D\,$.
c)
Qual dos ângulos $\,B\hat{A}D\,$ ou $\,B\hat{M}D\,$ é maior? Justifique.
cubo de aresta 1

 



resposta: a) $\,cosB\hat{A}D\,=\,\frac{\,\sqrt{6\,}\,}{3}\,$
b) $\,cosB\hat{M}D\,=\,\frac{\,7\,}{9}\,$
c) como a função cosseno é decrescente para ângulos agudos, se cos(BÂD) > cos(BMD) decorre que (BÂD) < (BMD)
×
(FUVEST - 1998) Considere um ângulo reto de vértice V e a bissetriz desse ângulo. Uma circunferência de raio 1 tem o seu centro C nessa bissetriz e VC = x .
a)
Para que valores de x a circunferência intercepta os lados do ângulo em exatamente 4 pontos?
b)
Para que valores de x a circunferência intercepta os lados do ângulo em exatamente 2 pontos?

 



resposta: a) $\phantom{X}\,1\,\lt\,x\,\lt\,\sqrt{\,2\;}\phantom{X}$
b) $\phantom{X} 0\,\leqslant\,x\,\lt\,1\;$ou$\,x\,=\,\sqrt{\,2\;}$
×
(FUVEST - 1998) 500 moedas são distribuídas entre três pessoas A, B e C, sentadas em círculo, da seguinte maneira: A recebe uma moeda, B duas, C três, A quatro, B cinco, C seis, A sete, e assim por diante, até não haver mais moedas suficientes para continuar o processo. A pessoa seguinte, então, receberá as moedas restantes.
a) Quantas foram as moedas restantes e quem as recebeu? (Deixe explícito como você obteve a resposta.)
b) Quantas moedas recebeu cada uma das três pessoas?

 



resposta: a) B recebeu as 4 moedas restantes.
b) A recebeu 176 moedas, B recebeu 159 moedas e C recebeu 165 moedas.
×
(FUVEST - 1998) P(x) é um polinômio de grau $\,\geqslant\,2\,$ e tal que P(1) = 2 e P(2) = 1 . Sejam D(x) = (x - 2)(x - 1) e Q(x) o quociente da divisão de P(x) por D(x) .

a) Determine o resto da divisão de P(x) por D(x).
b) Sabendo que o termo independente de P(x) é igual a 8, determine o termo independente de Q(x).


 



resposta: a) -x + 3 b) 5/2
×
(FUVEST - 1998)
a) Expresse $\phantom{X}\operatorname{sen}3\,\alpha\phantom{X}$ em função de $\phantom{X}\operatorname{sen}\alpha\,$.
b) Resolva a inequação $\phantom{X}\operatorname{sen}3\,\alpha\;\gt\;2\operatorname{sen}\alpha\phantom{X}\,$ para $\phantom{X}0\,\lt\,\alpha\,\lt\,\pi\;$.

 



resposta: a) sen3α = 3.senα - 4.sen³α
b)$\,S\,=\,$ $\lbrace\,\alpha\,\in\,{\rm\,I\!R}\,|\,0\,\lt\,\alpha\,\lt\,\frac{\,\pi\,}{\,6\,}\;{\text ou}\;\frac{\,5\pi\,}{\,6\,}\,\lt\,\alpha\,\lt\,\pi\,\rbrace\,$
×
Responda para cada um dos gráficos abaixo se representam ou não uma função e, em caso positivo, estabeleça o conjunto domínio e o conjunto imagem.
a)
gráfico função sigmóide
b)
gráfico função
c)
gráfico x0y de função
d)
função curva
e)
isso não é função
f)
função representada no gráfico cartesiano

 



resposta:

a) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\leqslant\,x\,\leqslant\,3\,\rbrace\,\;$
$\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,-1\,\leqslant\,y\,\leqslant\,4\,\rbrace\,$ ou D = [-2 ; 3] e Im = [-1 ; 4]

b) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,x\,\neq\,0\,\rbrace\,\;$
$\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,-2\,\lt\,y\,\lt\,0\phantom{X}{\text ou}\phantom{X}1\,\lt\,y\,\lt\,2\,\rbrace\,$ ou D = R-{0} e Im = ]-2 ; 0[ ∪ ]1 ; 2[

c) não é função.

d) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\leqslant\,x\,\leqslant\,1\,\rbrace\,\;$
$\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,0\,\leqslant\,y\,\leqslant\,4\,\rbrace\,$ ou D = [-2 ; 1] e Im = [0 ; 4]

e) não é função

f) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\lt\,x\,\lt\,2\,\rbrace\,\;$
$\,Im\,=\,\lbrace\,1; 2\,\rbrace\,$ ou D = ]-2 ; 2[ e Im = {1, 2}


×
Determinar a medida do ângulo $\,x\,$ conforme a figura:
ângulo excêntrico interno

 



resposta:
O ângulo $\,\hat{x}\,$ é a média aritmética dos arcos.
$\,x\,=\,\dfrac{\,80\,+\,50\,}{2}\,=\,65^o\,$
Ângulos com vértice no interior do círculo:
Ângulo Excêntrico Interior
ângulo excêntrico interior
$\;\alpha\;=\;\dfrac{\stackrel \frown{AB}\,+\,\stackrel \frown{MN}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;a\,+\,b\;}{\;2\;}\;$

×
Determinar a medida do ângulo $\,x\,$ na figura:
ângulo inscrito

 



resposta:

Ângulo inscrito é aquele que possui vértice em um dos pontos da circunferência e seus lados são semi-retas secantes.

A medida de um ângulo inscrito é igual à metade do arco que seus lados delimitam na circunferência.

Ângulos com vértice em um ponto da circunferência
Ângulo Inscrito
ângulo inscrito
$\;\hat{P}\;=\;\dfrac{\stackrel \frown{AB}}{\;2\;}\;$
 
Ângulo de
Segmento
ângulo de segmento
$\;\hat{P}\;=\;\dfrac{\;a\;}{\;2\;}\;$
ângulo inscrito e ângulo central
Como o arco delimitado pelo ângulo $\;\hat{x}\;$ do enunciado é de 112°, a medida de $\;\hat{x}\;$ é igual à metade de 112°.⟶
x = 112°/2 = 56°
x = 56°
×
Determinar a medida do ângulo $\,x\,$ nas figuras seguintes:
a)
ângulo inscrito de 100 graus
b)
ângulo excêntrico externo
c)
ângulo x excêntrico interior

 



resposta: resposta
×
Determinar a área total de um octaedro regular inscrito numa esfera de volume igual a 36 ℼ m³ .

 



resposta:
octaedro regular inscrito na esfera
Vesfera = $\,\frac{\,4\,}{\,3\,}\pi\,R^3\;\Rightarrow$

$\,36\,\pi\;=\;\frac{\,4\,}{\,3\,}\pi\,R^3\;\Rightarrow\;R\,=\,3\,m\,$

$\,a^2\,=\,R^2\,+\,R^2\;\Rightarrow$ $\,a^2\,=\,9\,+\,9\;\Rightarrow$ $\,a\,=\,3\sqrt{\,2\,}\;m$

Aface = Atriângulo equilátero = $\,\dfrac{\ell^2\,\sqrt{3\,}}{4}\,=$ $\,\dfrac{\,(3\sqrt{2})^2\,\centerdot\,\sqrt{\,3\,}}{4}\,=\,\dfrac{\,9\,\sqrt{\,3\,}\,}{2}\,m^2$

$\,A_{\text TOTAL}\;=\;8\,\centerdot\,A_{\text face}\,=$ $\,\dfrac{\,8\,\centerdot\,9\,\sqrt{\,3\,}\,}{2}\, =\,36\sqrt{\,3\,}\;m^2$

ATOTAL = $\,36\sqrt{\,3\,}\;m^2$
×
Dada uma esfera de raio r , calcular o volume do cilindro equilátero circunscrito.

 



resposta:
cilindro equilátero com esfera circunscrita
Resolução:
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.
Área da Base = $\,A_B = \pi\,r^2\;$
$\;h\,=\,2r\;$
$\,V\,=\,A_B\,\centerdot\,h\,=\,\pi\,r^2\,\centerdot\,2r\,=\,2\pi\,r^3\,$
Volume = 2 ℼ r³
×
A secção meridiana de uma esfera de raio R é equivalente a uma secção menor de uma segunda esfera, distante R do centro. Calcular o raio desta segunda esfera em função de R.

 



resposta:

Quando um plano α secciona uma esfera e não contém o centro da mesma, a secção determinada será um círculo cujo raio é menor do que o raio da esfera. Essa seção é denominada 'círculo menor esfera'.

esfere pequena com círculo máximo e esfera grande com círculo menor

Considerações:

No desenho, de acordo com o enunciado, a esfera maior apresenta uma secção plana que dista R do centro da esfera. O círculo menor determinado é equivalente ao círculo de raio R que encontramos na secção meridiana da esfera pequena.

Decorre do Teorema de Pitágoras:
$\,x^2\,=\,R^2\,+\,R^2\,$
$\,x\,=\,R\sqrt{\,2\,}\,$

O raio da segunda esfera é $\,R\sqrt{\,2\,}\,$
×
Qual a área da superfície da esfera cuja secção meridiana tem 6 ℼ m² de área?

 



resposta:

Quando um plano α secciona uma esfera e contém o centro da mesma, a secção será denominada 'círculo máximo da esfera' (seu raio é o mesmo raio da esfera).

secção meridiana é a secção que passa pelo centro da esfera

Considerações:

O raio da secção meridiana tem medida igual à medida do raio da esfera.

Áreacírculo máximo = ℼ R² = 6 ℼ ⟺ R² = 6
Áreasuperf. esférica = 4 ℼ R² = 4 ℼ 6 = 24ℼ m²

Ssuperf. esférica = 24ℼ m²
×
Qual é a área da secção plana feita numa esfera de raio 1 cm , por um plano distante $\,\frac{\;\sqrt{\,2\,}\;}{6}\,$cm do centro da mesma?

 



resposta:
secção plana na esfera

Veja a figura onde está representado o raio da secção (r), o raio da esfera (R = 1) e a distância entre a secção e o centro da esfera ($\,\frac{\sqrt{2}}{6}\,$).

Aplicando o teorema de pitágoras:
$\,R^2\,=\,r^2\,+\,(\frac{\sqrt{\,2\,}}{6})^2\;\Longrightarrow$ $\,r^2\,=\,1\,-\,(\frac{2}{\,36\,})\;\Longrightarrow$ $\,r^2\,=\,\frac{\,34\,}{\,36\,}\;=\;\frac{\,17\,}{\,18\,}\;$

O raio da secção plana é $\,r\,=\,\sqrt{\,\frac{17}{18}\;}\,$. Como essa secção tem área circular, então:

$\,S\,=\,\pi\,r^2\,=\,\dfrac{\,17\,\pi\,}{18}\,$cm²
Ssecção plana = (17ℼ/18) cm²
×
Calcular o volume de uma esfera de raio $\phantom{X}3\sqrt{\;2\;}\;m\phantom{X}$

 



resposta:

O volume de uma esfera de raio R é (4/3)ℼR³

esfera de raio R
$\,V = \dfrac{\;4\;}{\;3\;}\pi\,R^3\,\Rightarrow$ $\,V = \dfrac{\;4\;}{\;3\;}\pi\,(3\sqrt{\,2\,})^3\;\Rightarrow$
$\,V = 72\sqrt{\,2}\,\pi\,m^3\,$
×
lista de exercícios em pdf disponíveis:
mais...