Lista de exercícios do ensino médio para impressão
(ITA - 1977) Consideremos $\,m\,$ elementos distintos. Destaquemos $\,k\,$ dentre eles. Quantos arranjos simples daqueles $\,m\,$ elementos tomados $\,n\,$ a $\,n\;(A_{\Large m,n})\,$ podemos formar, de modo que em cada arranjo haja sempre, contíguos e em qualquer ordem de colocação, $\,r\;(r\,<\,n)\,$ dos $\,k\,$ elementos destacados?
a)
$\,(n\,-\,r\,-\,1)A_{\Large k,r}\,A_{\Large m-k,\, n-r}\,$
b)
$\,(n\,-\,r\,+\,1)A_{\Large k,r}\,A_{\Large m-r,\,n-k}\,$
c)
$\,(n\,-\,r\,-\,1)A_{\Large k,r}\,A_{\Large m-r,\,n-k}\,$
d)
$\,(n\,-\,r\,+\,1)A_{\Large k,r}\,A_{\Large m-k,\,n-r}\,$
e)
nenhuma das respostas anteriores.

 



resposta: (D)
×
Name:
Comment:


lista de exercícios em pdf disponíveis:
mais...