(ITA - 1977) Consideremos $\,m\,$ elementos distintos. Destaquemos $\,k\,$ dentre eles. Quantos arranjos simples daqueles $\,m\,$ elementos tomados $\,n\,$ a $\,n\;(A_{\Large m,n})\,$ podemos formar, de modo que em cada arranjo haja sempre, contíguos e em qualquer ordem de colocação, $\,r\;(r\,<\,n)\,$ dos $\,k\,$ elementos destacados?