Lista de exercícios do ensino médio para impressão
Provar que o triângulo cujos vértices são $A(2,2)$, $B(-4,-6)$, e $C(4,-12)$ é um triângulo retângulo.

 



resposta: Basta verificar que as medidas dos lados estão de acordo com o Teorema de Pitágoras.
×
(ITA - 2004) Considere um cilindro circular reto, de volume igual a $\;360 \pi \; cm^3\;$, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $\;54\sqrt{3}\;cm^2\;$, então, a área lateral da pirâmide mede, em $cm^2$,
a)
$\;18\sqrt{427}$
b)
$\;27\sqrt{427}$
c)
$\;36\sqrt{427}$
d)
$\;108\sqrt{3}$
e)
$\;45\sqrt{427}$

 



resposta:
hexágono regular inscrito na circunferência
Considerações:
Observe a figura que representa um hexágono regular inscrito numa circunferência:
1. o hexágono regular é formado por 6 triângulos equiláteros de lado igual ao raio da circunferência R.
2. a altura $\;h\;$ de cada triângulo equilátero em função do seu lado $\;R\;$ é $\;\dfrac{R\sqrt{3}}{2}\;$(veja esse exercício).
3.Então a área de cada triângulo equilátero é base × altura ÷ 2
$\;\rightarrow\;\dfrac{R\times h}{2}\;=\;\dfrac{R\times \frac{R\sqrt{3}}{2}}{2}\;=\;\dfrac{R^{\large 2}\sqrt{3}}{4}\;$ e a área do hexágono é $\;\rightarrow\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;$

pirâmide hexagonal
Resolução:
Conforme o enunciado, a base da pirâmide tem área $\;54\sqrt{3}\,cm^2\;$
1. calcular $\;R\;$:
$\;S_H\;=\,6\centerdot\dfrac{R^{\large 2}\sqrt{3}}{4}\;=\;54\sqrt{3} \Rightarrow \;R^{\large 2}\,=\,36\;\Rightarrow\;R\,=\,6\;$cm
2. calcular a altura da pirâmide $\;H\;$:
A altura da pirâmide é o dobro da altura do cilindro. Se a altura da pirâmide é $\;H\;$, então a altura do cilindro é $\;\dfrac{H}{2}\;$.
O volume do cilindro é Área da base × altura e conforme o enunciado vale $\;360\pi\,cm^3\;$.$\;\pi\centerdot R^{\large2}\centerdot \dfrac{H}{2}\,=\,360\pi\;\Rightarrow \;H\,=\,20\,cm\;$
3. Calcular a altura de uma face da pirâmide ($\;\overline{VM}\;$):
Observe na figura a pirâmide. Traçando-se a altura de uma das faces da pirâmide, temos o segmento $\;\overline{VM}\;$, que define o triângulo retângulo $\;VOM\;$ reto no ângulo $\;\hat{O}\;$.
Pelo Teorema de Pitágoras:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\; \overline{OM}\; \longrightarrow \dfrac{R\sqrt{3}}{2}\;=\;3\sqrt{3} & \\ \mbox{cateto}\;\overline{OV}\; \longrightarrow\;\phantom{XX}\;H\,= 20\phantom{X} & \\ \end{array} \right.\,$
$\;(VM)^{\large 2}\,=\,(OM)^{\large 2}\,+\,(OV)^{\large 2}\;\Rightarrow\;$ $\,(VM)^{\large 2}\,=\,(3\sqrt{3})^{\large 2}\,+\,20^{\large 2}\;=\;27\,+\,400\,=\,427\;\Rightarrow\;$ $\, \overline{VM}\,=\,\sqrt{427}\;$
4. Calcular a área lateral da pirâmide:
A área de uma face da pirâmide é $\;\overline{AB}\centerdot\overline{VM}\div 2\;$ $=\,\dfrac{R\centerdot\overline{VM}}{2}\;=\;\dfrac{6\times\sqrt{427}}{2}\;=\,3\sqrt{427};$A área lateral da pirâmide é a soma das áreas de todas as faces laterais, portanto
Área lateral = $\,6 \centerdot 3\sqrt{427}\;=\;18\sqrt{427}\;$ que corresponde à alternativa
(A)
×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
A diagonal de um quadrado de lado $\sqrt{2}$ cm. mede:

a) $\sqrt{2}$ cm. b) $2$ cm.

c) $2 \sqrt{2}$ cm. d) $\frac{\sqrt{2}}{2}$ cm.

e) $1$ cm.

 



resposta: alternativa B
×
Na figura, $ABDC$ é um trapézio isósceles e $\;AB\,=\,BD\,=\,\frac{CD}{2}\,=\,1$ cm. Calcular a altura do trapézio.
figura do trapézio

 



resposta: $\,h\,=\,\frac{\sqrt{3}}{2}\,$ cm.
×
Na figura abaixo, calcule o valor de $\;x\;$.
figura do triângulo retângulo composto

 



resposta: Resolução:
$AB^2 = 3^2 + 4^2$
$AB^2 = 9 + 16 = 26$
$AB = 5$
então:
$x^2 = 12^2 + AB^2$
$x^2 = 12^2 + 5^2$
$x^2 = 169\; \rightarrow \; x = 13$

Resposta: $x\; =\; 13$

×
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.

 



resposta:
Resolução:
$\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I)
$\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II)
Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III)
figura do triângulo retângulo clássico
Substituindo (I) e (II) em (III) temos então:
$\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$
$a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$
$\Rightarrow\;$
$a = 15$
$a = 3$ (inadequado porque $\;b\;\neq\;0\;$)

Substituindo $\;a\;=\;15\;$ em (I) e (II)
$\;b\;=\;12\;$
$\;c\;=\;9\;$
Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$

×
Determinar a altura relativa à hipotenusa de um triângulo retângulo cujos catetos valem $\;3\;cm\;\;\;\;$ e $\;\;\;\;4\;cm$.

 



resposta:
Resolução
triângulo retângulo resposta
$\;a^2\;=\;b^2\;+\;c^2\; \Rightarrow \; a^2\;=\;3^2\;+\;4^2\;\Rightarrow\;$
$\;\Rightarrow\;\;a\;=\;5\;$
$\;a\centerdot\;h\;=\;b\centerdot\;c\;$ (relação métrica)$\;\Rightarrow $
$ \Rightarrow \; 5\centerdot h\;=\;3\;\centerdot 4 \; \Rightarrow$
$\;\Rightarrow\;h\;=\;\frac{12}{5}\;cm\; = \; 2,4\;cm$
Resposta: $\,h\,=\,2,4\;cm\,$.
×

Determinar $\;x\;$ na figura abaixo.

figura do trapézio

 



resposta:
Resolução:
$AB = 5 \; \Rightarrow \; DM = 5$
$AD = 4 \;\Rightarrow \; BM = 4$
$DC = 8 \;\; \land \;\; DM = 5 \; \Rightarrow \; MC = 3$
figura do trapézio
Pitágoras: $BM^2 + MC^2 = BC^2 \;$ $\;\Rightarrow \;\;\;4^2 + 3^2 = x^2 \; \Rightarrow \;$ $\;x = 5$
Resposta:
$x = 5$
×
Calcule a diagonal do quadrado de lado $\;a\;$.

 



resposta:
Resolução:
diagonal do quadrado
Pelo Teorema de Pitágoras:
$(\overline{AC})^{\large 2}\;=\;(\overline{AB})^{\large 2}\;+\; (\overline{BC})^{\large 2}\;$
$(\overline{AC})^{\large 2}\;=\;a^{\large 2}\;+\;a^{\large 2}\;=\;2a^{\large 2} \;\Rightarrow \; \overline{AC}\,=\,a\sqrt{2}$
Resposta:
A diagonal de um quadrado de lado medindo $\;a\;$ tem medida igual a $\;a \centerdot \sqrt{2}$.
×
Na figura abaixo, o valor de x é:
a)
5
b)
6
c)
7
d)
8
e)
9
triângulo retângulo de cateto 8 e hipotenusa 10

 



resposta: (B)
×
Na figura, calcule "$\;x\;$" em função de $\;a\;$.
combinação de triângulos retângulos

 



resposta: Resolução:
$\;z^2\; = a^2 + a^2$
$\;y^2\; = z^2 + a^2 \; \Longrightarrow\; y^2 \; = a^2 + a^2 + a^2$
$\;w^2\; = y^2 + a^2\; \; \Longrightarrow\; w^2 = a^2 + a^2 + a^2 + a^2$
$\;x^2\; = w^2 + a^2 \;\Longrightarrow \; x^2 \; = 5 \centerdot a^2$
então
Resposta:
$\;x\; = \; a \sqrt{5}$
Observe que $\;x\; = a \centerdot \sqrt{n + 1}\;$, sendo $\;n\;$ o número de triângulos retângulos.
×
Na figura, $\;\overline{AD}\;$ é bissetriz interna relativa ao lado $\;\overline{BC}\;$. Calcule a medida do segmento $\;\overline{AD}\;$, sendo $\;AB \;= 6 cm$, $\;AC\; = 10 cm$ e $\;m(A\hat{B}C) = 90^o$.

figura do exercício sobre Teorema da Bissetriz Interna

 



resposta:
Resolução:
Observação: O teorema da bissetriz versa que a reta bissetriz de um dos ângulos do triângulo divide o lado oposto a este ângulo em dois segmentos proporcionais às medidas dos lados adjacentes ao ângulo.
triângulo retângulo ABC teoria da bissetriz interna answerm1606221458.png
Pelo Teorema de Pitágoras:
$(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^{2} \;\Rightarrow $
$\;10^2\;= \;6^2 + (\overline{BC})^2 \; \Rightarrow
\;\overline{BC} = \sqrt{64} \;\Longrightarrow \; \overline{BC} = 8$
portanto, na figura $\;a + b\; =\; 8$
Pelo Teorema da Bissetriz Interna,

$\frac{6}{a}\; = \;\frac{10}{b}$$\Rightarrow 5a - 3b \;=\;0$
então:
$\begin{align} 3a + 3b = 24 \phantom{XXXX} (I) \\ \;5a - 3b =\; 0 \phantom{XXXX}(II) \end{align}$
Somando (I) e (II) $\Longrightarrow 5a + 3a = 24 \Longrightarrow$
$\;a \; = 3\;$ e $\;b\;=\;5$
Usando o teorema de Pitágoras no triângulo retângulo ABD:
$\;h^2 = 6^2 + 3^2 \;\;\Rightarrow h^2 \;= 36 + 9 \;\;\Rightarrow h\;=\; 3\sqrt{5} $
Resposta:
A medida do segmento $\;\overline{AD}\;$ é $\;3\sqrt{5}\;cm$
×
A diagonal de um quadrado de lado 4 cm vale:
a)
$\;4\;cm\;$
b)
$\;8\;cm\;$
c)
$\;4\sqrt{2}\;cm\;$
d)
$\;2\sqrt{2}\;cm\;$
e)
$\;1\; cm\;$

 



resposta: C
×
Conforme a figura abaixo, a medida do lado maior $\;x\;$ do retângulo é:
sobre teorema de Pitágoras
a)
5 m
b)
$\sqrt{47}\;$ m
c)
47 m
d)
25 m
e)
12 m

 



resposta: alternativa A
×
Na figura são dadas as medidas de dois lados de um triângulo retângulo. O terceiro lado mede:
a)
3
b)
$\sqrt{41}$
c)
$\sqrt{37}$
d)
4
e)
$\sqrt{34}$
triângulo retângulo de catetos 3 e 5

 



resposta: (E)
×
A altura de um triângulo equilátero de lado 4 cm é:
a)$\;4 \;cm\;$ b)$\;2 \;cm\;$ c)$\;4\sqrt{3} \;cm\;$
d)$\;2\sqrt{3} \;cm\;$e) $\;1\; cm\;$

 



resposta: D
×
A medida do segmento $\;x\;$ na figura abaixo, onde $\;b\;$ é conhecido, é dada por:
a)
${\large \frac{2b\sqrt{5}}{5}}$
b)
$b\sqrt{10}$
c)
$b\sqrt{2}$
d)
$2b$
e)
$1$
teorema de pitágoras em série

 



resposta: (A)
×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é:
a) um triângulo retângulo
b) um triângulo acutângulo
c) um triângulo obtusângulo
d) um triângulo equiângulo
e) nenhuma das anteriores

 



resposta: C
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
Numa sequência de três números naturais (a , b , c) , os termos são chamados de "Números Pitagóricos" se forem tais que c² = a² + b² .
Assinale a alternativa onde só existem Números Pitagóricos:
a)
(1 , 1 , 1) ;
(3 , 4 , 5);
(8 , 9 , 12);
(3 , 7 , 10);
(4 , 6 , 8);
b)
(3 , 4 , 5) ;
(5 , 12 , 13) ;
(6 , 8 , 10) ;
(15 , 17 , 21) ;
(7 , 24 , 25) ;
c)
(2 , 3 , 4) ;
(6 , 8 , 10) ;
(16 , 18 , 20) ;
(10 , 20 , 30) ;
(20 , 30 , 50) ;
d)
(8 , 9 , 10) ;
(10 , 12 , 14) ;
(12 , 13 , 20) ;
(10 , 20 , 40) ;
(18 , 22 , 30) ;
e)
N.D.A.

 



resposta: alternativa E
×
(PUC - 1973)
Na figura, sabendo-se que:

$\overline{AE}\;=\;30\;$m , $\;\;\overline{BD}\;=\;40\;$m
$\;\overline{AB}\;=\;50\;$m , $\;\;\overline{EC}\;=\;\overline{CD}$

Então, $\;\overline{AC}\;$ e $\;\overline{CB}\;$ valem, respectivamente:
a)
25 m e 25 m
b)
32 m e 18 m
c)
38 m e 12 m
d)
40 m e 10 m
e)
nenhuma das
anteriores
triângulos retângulos EAC e CBD

 



resposta: alternativa B
×
(PUC - 1973) Na figura abaixo, os segmentos são medidos em $\;m\;$. O segmento $\;x\;$ vale:
a)
11 m
b)
105 m
c)
impossível, pois 43 não tem raiz exata
d)
7 m
e)
nenhuma das anteriores
figura do triângulo retângulo

 



resposta: (D)
×
Determine o valor de $\;x\;$ de acordo com a figura:
figura do exercício

 



resposta: x = 5
×
Determine o valor de x na figura abaixo:
figura do exercicio

 



resposta: $\;x\;=\;5\sqrt{5}\;$
×
Determine a medida do segmento $\phantom{X}{\large x}\phantom{X}$
mostrado na figura:
triângulos

 



resposta: $\;x\;=\;2\sqrt{11}$

×
Determine $\;x\;$ na figura:
figura do exercicio sobre teorema de pitagoras

 



resposta: $\;x\;=\;\sqrt{35}\;$
×
Os lados de um triângulo têm $\;6m,\;9m,\;$ e $\;11m\;$ de comprimento. É triângulo retângulo? Caso seja, que lado é a hipotenusa?

 



resposta: Não é triângulo retângulo: $6^2 + 9^2\;$ < $\; (11)^2\; \Longrightarrow\;117\;$ < $\;121$
×
O lado de um triângulo equilátero é igual à altura de um segundo. Qual a razão de semelhança na ordem dada?

 



resposta: $\;r\;=\;\frac{\sqrt{3}}{2}\;$
×
Determinar a altura de um triângulo equilátero cujo lado mede 1 cm.

 



resposta: $\;h\;=\;\frac{\sqrt{3}}{2}\;cm$
×
Na figura, $ABEF$ é um quadrado de lado $\;5\;m\;$. Determinar a medida de $\;\overline{CD}$.
figura do quadrado de lado 5m

 



resposta: $\;CD\;=\;\frac{5\sqrt{2}}{2} \;m$
×
Na figura, $\;ABCD\;$ é um quadrado de lado $\;1\;cm\;$ e $\;DBE\;$ é um triângulo equilátero. Determinar a medida de $\;\overline{CE}\;$.
imagem quadrado e triângulo


 



resposta: $\;\overline{CE}\;=\;\sqrt{5\,+\,2\sqrt{3}}\;\,cm$
×
Com os dados da figura ao lado,
determine o valor de " x ".
dois triângulos retângulos

 



resposta: x = 12
×
Determine o valor do lado x na figura abaixo.
triângulo

 



resposta: x = 5
×
Determine a medida do lado "x" na figura abaixo.
triângulo duplo

 



resposta: x = 7
×
Na figura abaixo, determinar o valor de "x" .
triângulos cruzados

 



resposta: x = 25
×
Determine a medida do segmento "x" conforme a figura abaixo.

triângulo retângulo


 



resposta: x = 5
×
(ENERJ) Entre duas torres de 13 m e 37 m de altura existe na base uma distância de 70 m. Qual a distância entre os extremos sabendo-se que o terreno é plano?

 



resposta: 74 m
×
(USP) Determinar os lados a, b e c de um triângulo retângulo em A se b + c = 7 dm e h = 2,4 dm.

 



resposta: a = 5 dm; b = 4 dm; c = 3 dm
×
(FEI) O triângulo ABC é equilátero; D e E são os pontos médios de BH e CH. Comparar as áreas $S_1$ do retângulo DHEM com $S_2$ do retângulo DEGF.
a)
são iguais
b)
$S_1$ < $S_2$
c)
$S_1$ > $S_2$
d)
dependem da medida do lado do triângulo e assim pode ser qualquer das anteriores.
e)
$S_1 + S_2 =\dfrac{a^2\sqrt{3}}{16}$
triângulo equilátero ABC

 



resposta: (A)
×
(USP) Na figura, temos a representação de um retângulo inscrito num setor de $\;90^o\;$ e de raio $6m$. Medindo o lado OA do retângulo $\;\frac{2}{3}\;$ do raio, o produto $OA\;\times\;AB\;$ é:
setor 90 graus
a)
$4\sqrt{5}\;m^2$
b)
$8\sqrt{5}\;m^2$
c)
$8\sqrt{13}\;m^2$
d)
$16\;m^2$
e)
$24\;m^2$

 



resposta: (B)
×
(USP) São conhecidos os seguintes elementos de um triângulo $ABC$: $\;\measuredangle\; CAB = 30^o\;$; $\;AB = 8m\;$;$\;CB = 5m\;$. Pode-se afirmar que:

a) $AC\;=\;(2\sqrt{3}\;-\;3)\;m$ é a única solução.
b) $AC\;=\;(2\sqrt{3}\;+\;3)\;m$ é a única solução.
c) $AC\;=\;(4\sqrt{3}\;-\;2)\;m\; $ ou $\;AC\;=\;(4\sqrt{2}\;+\;3)\;m\;$
d) $AC\;=\;(2\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(2\sqrt{3}\;+\;3)\;m\;$
e) $AC\;=\;(4\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(4\sqrt{3}\;+\;3)\;m\;$

 



resposta: alternativa E
×
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.

 



resposta:
Resolução:
círculo com triângulo ABC inscrito e ângulo central AOB de 90 graus
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
$\,r^2\,+\,r^2\,=\,(4\sqrt{2})^{\large 2}\,$
$\,2\centerdot r^2\,=\,16\centerdot 2\,\Rightarrow\,r\,=\,\sqrt{16}\,$
$\,r\,=\,4\,$
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos:
$\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
medida do raio r = 4
×
(FUVEST - 2009) Na figura, estão representados a circunferência C, de centro O e raio 2, e os pontos A, B, P e Q, de tal modo que:
1. O ponto O pertence ao segmento $\,\overline{PQ}\,$.
2. OP = 1 ,   OQ = $\,\sqrt{2}\,$.
3. A e B são pontos da circunferência. $\;\overline{AP}\; \bot \;\overline{PQ}\phantom{X}$ e $\phantom{X}\overline{BQ}\; \bot\; \overline{PQ}\,$.

Assim sendo, determine:

a)
A área do triângulo APO.
b)
Os comprimentos dos arcos determinados por A e B em C.
circunferência com área hachurada

 



resposta:
a)
$\,\frac{\sqrt{3}}{2}\,$
b)
$\,\frac{5\pi}{6}\,$ e $\,\frac{19\pi}{6}\,$
c)
$\,\frac{3\sqrt{3}\,+\,6\,+\,5\pi}{6}\,$

×
(U.F.VIÇOSA - 1990) Na figura abaixo, a circunferência de centro P e raio 2 é tangente a três lados do retângulo ABCD de área igual a 32. A distância do ponto P à diagonal AC vale:
a)
$\,2\dfrac{\sqrt{5}}{5}\,$
b)
$\,\dfrac{\sqrt{5}}{2}\,$
c)
$\,\dfrac{\sqrt{5}}{5}\,$
d)
$\,2\sqrt{5}\,$
e)
$\,3\dfrac{\sqrt{5}}{5}\,$
retângulo com círculo interno tangente a 3 lados

 



resposta: Alternativa A
×
(PUC SP - 1980) Num triângulo retângulo cujos catetos medem $\,\sqrt{3}\;$ e $\;\sqrt{4}\,$, a hipotenusa mede:
a)
$\,\sqrt{5}\,$
b)
$\,\sqrt{7}\,$
c)
$\,\sqrt{8}\,$
d)
$\,\sqrt{9}\,$
e)
$\,\sqrt{12}\,$

 



resposta: Alternativa B
×
Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica conforme a figura. A abertura das taças é de 4 cm de raio interno, com profundidade de $\,8\sqrt{2}\,$cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
a)
4
b)
3
c)
2
d)
1
e)
5
taça de vinho

 



resposta:
taça de vinho
Na figura, a pérola de colar esférica de centro O e raio 1 cm encalhada no fundo da taça com formato de cone — raio da base do cone $\;\overline{AB}\,=\,4\,$cm e altura do cone $\;h \,=\,8\sqrt{2}\,$cm. Foi traçada a altura do cone, o segmento $\;\overline{AC}\;$.
Se a esfera está apoiada sobre a face lateral do cone, então a aresta $\;\overline{BC}\;$ é tangente à esfera no ponto $\;P\;$ e o raio $\;\overline{OP}\;$ é perpendicular a $\;\overline{BC}\;$.
Consideremos o ângulo $\;\alpha\;$ no triângulo $\;ABC\;$ reto em $\;\hat{A}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{AB}}{\mbox{cateto adjacente}\,\overline{AC}}\,=$ $\,\dfrac{4}{8\sqrt{2}}\phantom{X}(I)$
Consideremos o mesmo ângulo $\;\alpha\;$ no triângulo $\;POC\;$ reto em $\;\hat{P}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{OP}}{\mbox{cateto adjacente}\,\overline{PC}}\,=$ $\,\dfrac{\mbox{raio da esfera }\overline{OP}}{\overline{PC}}\,=\,\dfrac{1}{\overline{PC}}\phantom{X}(II)$
De (I) e (II) decorre que:
$\phantom{X}\dfrac{1}{\overline{PC}}\,=\,\dfrac{4}{8\sqrt{2}}\,$ $\;\Rightarrow\;\overline{PC}\,=\,\dfrac{8\sqrt{2}}{4}\;$ $\Rightarrow\;\overline{PC}\,=\,2\sqrt{2}\,$
Recorrendo ao Teorema de Pitágoras no triângulo $\;POC\;$:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\;\overline{PC}\,=\,2\sqrt{2}\;& \\ \mbox{cateto}\;\overline{OP}\,=\,1\longrightarrow & \mbox{(raio da esfera)}\\ \mbox{hipotenusa}\, \overline{OC}\,=\,d\,+\,1 & \\ \end{array} \right.\,$
$\,(d\,+\,1)^2\,=\,1^2\,+\,(2\sqrt{2})^2\;\Rightarrow\;d\,+\,1\,=\,\sqrt{9}\,$ $\Rightarrow\;d\,=\,3\,-\,1\;\Rightarrow\;\boxed{\,d\,=\,2\,}\,$, que corresponde à
Alternativa C
×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N .
a) Achar a distância AB.
b) Achar a distância MN.
dois cubos sobrepostos de centros M e N e arestas 1 cm e 2 cm

 



resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações:
Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
vista lateral do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{AB})^{\large 2}\,=\,(1)^{\large 2}\,+\,(3)^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{AB}\,=\,\sqrt{10} \mbox{ cm}\;}$
Considerações:
Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
secção diagonal do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
Consideremos o triângulo NPM reto em P.
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{MN})^{\large 2}\,=\,(\dfrac{\sqrt{2}}{2})^{\large 2}\,+\,(\dfrac{3}{2})^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2} \mbox{ cm}\;}$

×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Qual é a área da secção plana feita numa esfera de raio 1 cm , por um plano distante $\,\frac{\;\sqrt{\,2\,}\;}{6}\,$cm do centro da mesma?

 



resposta:
secção plana na esfera

Veja a figura onde está representado o raio da secção (r), o raio da esfera (R = 1) e a distância entre a secção e o centro da esfera ($\,\frac{\sqrt{2}}{6}\,$).

Aplicando o teorema de pitágoras:
$\,R^2\,=\,r^2\,+\,(\frac{\sqrt{\,2\,}}{6})^2\;\Longrightarrow$ $\,r^2\,=\,1\,-\,(\frac{2}{\,36\,})\;\Longrightarrow$ $\,r^2\,=\,\frac{\,34\,}{\,36\,}\;=\;\frac{\,17\,}{\,18\,}\;$

O raio da secção plana é $\,r\,=\,\sqrt{\,\frac{17}{18}\;}\,$. Como essa secção tem área circular, então:

$\,S\,=\,\pi\,r^2\,=\,\dfrac{\,17\,\pi\,}{18}\,$cm²
Ssecção plana = (17ℼ/18) cm²
×
A secção meridiana de uma esfera de raio R é equivalente a uma secção menor de uma segunda esfera, distante R do centro. Calcular o raio desta segunda esfera em função de R.

 



resposta:

Quando um plano α secciona uma esfera e não contém o centro da mesma, a secção determinada será um círculo cujo raio é menor do que o raio da esfera. Essa seção é denominada 'círculo menor esfera'.

esfere pequena com círculo máximo e esfera grande com círculo menor

Considerações:

No desenho, de acordo com o enunciado, a esfera maior apresenta uma secção plana que dista R do centro da esfera. O círculo menor determinado é equivalente ao círculo de raio R que encontramos na secção meridiana da esfera pequena.

Decorre do Teorema de Pitágoras:
$\,x^2\,=\,R^2\,+\,R^2\,$
$\,x\,=\,R\sqrt{\,2\,}\,$

O raio da segunda esfera é $\,R\sqrt{\,2\,}\,$
×
Um monumento tem o pedestal em forma de tronco de pirâmide quadrada, onde o apótema tem 6 m e as bases tem lados de 4 m e 2 m. Qual o volume de concreto usado para fazer o pedestal?

 



resposta:
tronco de pirâmide regular geratriz 6 m
Conforme a figura, no triângulo hachurado ABC temos:

● o segmento AB é o apótema lateral com medida 6 m,
● o segmento BC é 1 m, igual a metade da diferença entre a medida dos lados da base menor e da base maior e
● e AC é altura do pedestal.

Pelo teorema de Pitágoras:

$\;(AB)^2\,=\,(BC)^2\,+\,(AC)^2\phantom{X}$
$\;(AC)^2\;=\;36\;-\;1\;\Longrightarrow\;\;(AC)\;=\;\sqrt{\;35\;}\phantom{X}$
Portanto a altura do tronco de pirâmide (pedestal) é $\,\sqrt{\,35\,}\,m\,$
$\;A_b\;=\;$ Área da base menor $\;= 2^2 = 4 m^2\;$
$\;A_B\;=\;$ Área da base maior $\;= 4^2 = 16 m^2\;$
$\;V_{tronco}\;=\;\dfrac{\;h\;}{\;3\;}\left({A_b\;+\;\sqrt{\;A_b\;\centerdot\;A_B\;}\;+\;A_B}\right)\phantom{X}$
$\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left( 4\;+\;\sqrt{\;4\;\centerdot\;16\;}\;+\;16\right)\phantom{X}$
$\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;\sqrt{\;64\;}\right)\phantom{X}$
$\;V_{tronco}\;=\;\dfrac{\;\sqrt{\,35\,}\;}{\;3\;}\left(20\;+\;8\right)\phantom{X}$
$\phantom{X}V\,=\,\dfrac{\,28\sqrt{\,35\,}\,}{3}\,m^3\phantom{X}$
×