Determine o vértice e o conjunto imagem da função $\;f\;\text{ de }\,\mathbb{R}\,\text{ em } \,\mathbb{R}\;$ definida por $\;f(x)\,=\,2x^2 \,-\,12x\,+\,10\;$.
resposta: Vértice: $\,V\,=\,(3;\,-8)\;$ Conjunto Imagem: $\;Im(f)\,=\,[-8;\,+\infty[ \;$ ou $\;Im(f)\,=\,\lbrace \,y\in \mathbb{R} \mid \; y \geqslant -8 \,\rbrace$ ×
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.
(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
(FAAP) Na figura, enquanto $\,x\,$ varia de 0 a $\,\beta\,$, os pontos $\;P_1\;$ e $\;P_2\;$ percorrem arcos nas parábolas $\,y\,=\,x^2\,-\,4x \;\;$ e $\;\;-x^2\,+\,16x\;$.
Pede-se:
a)
o valor de $\,\beta\,$
b)
a maior distância entre $\,P_1\,$ e $\,P_2\,$.
resposta: a)$\,\beta\,=\,10\,$b) maior distância : $\,d_{P1-P2} \,=\,50\,$ ×
(VUNESP) Em uma partida de futebol a trajetória da bola, ao ser batida uma falta do jogo, é tal que a sua altura $\,h\,$, em metros, varia com o tempo $\,t\,$, em segundos, de acordo com a equação: $\phantom{X}h\,=\,-t^2\,+\,10t \phantom{XXX}(0\,\leqslant \,t \,\leqslant 10)$ Então a alternativa correta é:
a)
a altura máxima atingida pela bola é de 25 m.
b)
a distância do local da falta até o local onde a bola atinge o solo é de 20 m.
c)
o valor de $\,t\,$ para o qual a bola atinge a sua altaura máxima é maior do que 5 segundos.
d)
a bola, nesse intervalo de tempo, atinge 3 vezes o solo.
(SANTA CASA - 1982) As dimensões de um retângulo são numericamente iguais às coordenadas do vértice da parábola de equação $\;y\,=\,-128x^2\,+\,32x\,+\,6\;$. A área do retângulo é: