Pede-se:
a) a medida em graus do ângulo C;
b) a medida em metros dos lados a e b;
c) a área do triângulo ABC em metros quadrados.
b) Pelo Teorema dos Senos temos que $\,\dfrac{b}{\,sen \hat{B}\,}\,=\,\dfrac{c}{\,sen \hat{C}\,}\,=\,\dfrac{a}{\,sen \hat{A}\,}\,$, então podemos concluir que $\,b\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{B}\,}{sen\,\hat{C}}\phantom{X}$ e $\phantom{X}a\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{A}\,}{sen\,\hat{C}}\,$
Lembrar que $\,sen(a\,+\,b)\,=$ $\,sen\,a\,\centerdot\,cos\,b\,+\,sen\,b\,\centerdot\,cos\,a\,$
$\,sen\,\hat{A}\,=\,sen75^o\,$ $=\,sen\,(45^o\,+\,30^o)\,=$ $\,sen\,45^o\,\centerdot\,sen\,30^o\,+\,sen\,30^o\,\centerdot\,sen\,45^o\,=\,$ $\dfrac{\,\sqrt{\,2\;}}{2}\,\dfrac{\,\sqrt{\,3\;}}{2} + \dfrac{\,\sqrt{\,3\;}}{2}\,\dfrac{\,\sqrt{\,2\;}}{2}\, =$ $ \dfrac{\,2\sqrt{\,6\;}}{4} = \dfrac{\,\sqrt{\,6\;}}{2}$
$\,sen\,\hat{B}\,=\,sen\,60^o\,=\,\dfrac{\,\sqrt{\,3\;}}{2}\,$
$\,sen\,\hat{C}\,=\,sen45^o\,=\,\dfrac{\,\sqrt{\,2\;}}{2}\,$
$\phantom{X}a\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{A}\,}{sen\,\hat{C}}\,=$ $\,\dfrac{\,13\,\centerdot\,\dfrac{\sqrt{\,6\,}}{2}\,}{\dfrac{\sqrt{\,2\,}}{2}}\, =$ $\,13\,\centerdot\,\dfrac{\sqrt{\,6\,}\,\centerdot\,\cancel {2}}{\cancel {2}\,\centerdot\,\sqrt{\,2\,}\,}\,=\,$ $13\,\centerdot\,\dfrac{\sqrt{\,3\,}\,\centerdot\,\cancel{\sqrt{\,2\,}} }{\cancel{\sqrt{\,2\,}}\,}\,=\,13\,\sqrt{\,3\,}\, m\phantom{X}$
$ \phantom{X}b\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{B}\,}{sen\,\hat{C}}\;=$ $\,\dfrac{\,13\,\centerdot\,\dfrac{\,\sqrt{\,3\;}}{2}\,}{\dfrac{\,\sqrt{\,2\;}}{2}}\,=$ $\,13\,\centerdot\,\dfrac{\sqrt{\,3\,}\,\centerdot\,\cancel {2}}{\cancel {2}\,\centerdot\,\sqrt{\,2\,}\,}\,=$ $\,13\,\centerdot\,\dfrac{\sqrt{\,3\,}\,\centerdot\,\sqrt{\,2\,}}{\sqrt{\,2\,}\,\centerdot\,\sqrt{\,2\,}\,} = \dfrac{\,13\,\sqrt{\,6\,}}{2}\; m\phantom{X}$