(MACKENZIE - 1969) Sendo $\,\mathbb{A}\,=\,\lbrace\,\lbrace\,1\,\rbrace , \,\lbrace\,2\,\rbrace,\,\lbrace\,1,\,2\,\rbrace\,\rbrace\,\;$ pode-se afirmar que
a) $\,\{1\}\,\notin \mathbb{A}\,$ b) $\,\{1\}\,\subset \mathbb{A}\,$ c) $\,\{1\}\,\cap\,\{2\}\,\not\subset \, \mathbb{A}\,$ d) $\,2\,\in \mathbb{A}\,$ e) $\,\{1\}\,\cup\,\{2\}\,\in \, \mathbb{A}\,$
(PUC) Sabendo-se que $\,A\,$ e $\,B\,$ são subconjuntos de $\,U\,$, $ \;A\, \cap B \, = \, \lbrace c, d \rbrace\,$, $\;A\, \cup\, B \,=\, \lbrace a, b, c, d, e, f \rbrace\;$ e $\;\sideset{}{_U^A}\complement \, = \lbrace e, f, g, h, i \rbrace\,$, então:
a)
n(A) = 2 e n(B) = 4
b)
n(A) = 4 e n(B) = 2
c)
n(A) = 3 e n(B) = 3
d)
n(A) = 4 e n(B) = 4
e)
n(A) = 1 e n(B) = 5
Observação: n(X) significa "número de elementos do conjunto X".
(UEMT) O domínio e o contradomínio de uma função $\,f\,$ são subconjuntos de $\,\mathbb{R}\,$. Sendo $\,f\,$ dada por $\,f(x)\,=\, {\large \dfrac{1}{\sqrt{x - x^2}}}\,$ o dominio de $\,f\,$ pode ser:
(FUVEST - 2018) Sejam $\,D_{\large f}\,$ e $\,D_{\large g}\,$ os maiores subconjuntos de $\,\mathbb{R}\,$ nos quais estão definidas, respectivamente, as funções reais
Sendo dado um conjunto $\,\mathbb{A}\,$ com n elementos indiquemos por $\,a\,$ o número de subconjuntos de $\,\mathbb{A}\,$. Seja $\,\mathbb{B}\,$ o conjunto que se obtém acrescentando um novo elemento a $\,\mathbb{A}\,$ e indiquemos por $\,b\,$ o número de subconjuntos de $\,\mathbb{B}\,$. Qual a relação que liga $\,a\,$ e $\,b\,$?
Sabendo-se que um conjunto A possui 1024 subconjuntos, quantos elementos possui o conjunto A?
resposta:
Considerações:
Se A possui k elementos, então A possui 2k subconjuntos.
Resolução: Seja k o número de elementos do conjunto A. n(A) = k ⇒ n[P(A)] = 2k, ou seja, A possui 2k subconjuntos. Portanto: $\;2^{\large k}\,=\,1024\;\Rightarrow\;2^{\large k}\,=\,2^{\large 10}\;\Rightarrow\;k\,=\,10\;$
Considere os conjuntos: S = {1,2,3,4,5} e A = {2, 4} Determine o conjunto X de tal forma que: $\,\left\{\begin{array}{rcr} X\,\cap\,A\,=\varnothing\;& e \\ X\,\cup\,A\,=\,S\;& \\ \end{array} \right.\,$
resposta:
Resolução: Como $\,X\,\cap\,A\,=\,\varnothing\,$ e $\,X\,\cup\,A\,=\,S\,$ então $\,X\,=\,\overline{\,A\,}\,=\,S\,-\,A\,=\,\sideset{}{_S^A}\complement \,\Rightarrow$
(SANTA CASA) O conjunto verdade da equação $\phantom{X}\dfrac{\;6^{\large x\,-\,1}\,+\,6^{\large x\,-\,2}\;}{\;6^{\large 1\,-\,x}\,+\,6^{\large 2\,-\,x}\;}\,=\,1\phantom{X}$ é um subconjuntos de:
A e B são dois subconjuntos de $\;{\rm I\!R}\;$ e os gráficos abaixo representam relações binárias de A em B . Qual dos gráficos representa uma função de A em B ?