(FEI MAUÁ) Supondo $\phantom{X}x\phantom{X}$e$\phantom{X}y\phantom{X}$ reais com $\;x\,-\,y\,\neq\,0\;$ e $\;x\,+\,y\,\neq\,0\;$ simplificar a expressão algébrica $\phantom{X}\dfrac{\;x^3\,-\,y^3\;}{x\,-\,y}\,-\,\dfrac{\;x^3\,+\,y^3\;}{x\,+\,y}\phantom{X}$.
(F E EDSON DE QUEIROZ) Se $\phantom{X}M\,=\,a\,+\,\dfrac{\;b\,-\,a\;}{\;1\,+\,ab}\phantom{X}$e$\phantom{X}N\,=\,1\,-\,\dfrac{\;ab\,-\,a^2\;}{1\,+\,ab}\phantom{X}$, com $\;ab\,\neq\,1\;$, então $\;\dfrac{M}{N}\;$ é:
(USP) Uma expressão equivalente a $\phantom{X}2\,+\,\sqrt{\;\dfrac{\,a^2\,}{\,b^2\,}\,+\,\dfrac{\,b^2\,}{\,a^2\,}\,+\,2\phantom{X}}\phantom{X}$, para a > 0 e b > 0 é:
(USP) Simplificando a expressão $\phantom{X}\left(\dfrac{\,a\,+\,b\,}{\,a\,-\,b\,}\,-\,\dfrac{\,a\,-\,b\,}{\,a\,+\,b\,} \right)\,\centerdot\,\dfrac{\,a\,+\,b\,}{\,2ab\,}\phantom{X}$ obtém-se: (Observação: supor a ≠ b, a ≠ -b, ab ≠ 0.)
(USP) A expressão $\phantom{X}\dfrac{\;x^2\,-\,1\;}{x^2}\,\div\,\dfrac{x^2\,-\,2x\,-\,3}{\;x^3\,-\,6x^2\,+\,9x\;}\phantom {X}$ é equivalente, para valores de x que não anulam nenhum dos 4 polinômios citados, a