(ITA - 1982) A figura hachurada abaixo é a seção transversal de um sólido de revolução em torno do eixo x . A parte tracejada é formada por um setor circular de raio igual a 1 e ângulo igual a 60° . O segmento de reta AB é paralelo ao eixo x . A área da superfície total do sólido mede:
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
(UFMG - 1990) Os lados de um triângulo isósceles medem $\,5 \text{ cm, } 6 \text{ cm e } 5\text{ cm}\,$. O volume do sólido que se obtém girando-o em torno de sua base, em $\,cm^3\,$, é:
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por: