Com os dados da figura, completar as igualdades dos itens a. até d.
a)
$\;h^2\; = \;m\centerdot\;$
b)
$\;c\centerdot h\;= \; $
c)
$\;c^2 \; = \;m \centerdot \; $
d)
$\;b^2\;=\;n \centerdot\;$
resposta: a. $n$ ($h^2 = mn$) b. $bm$ ($c \centerdot h = bm$) c. $a$ ($c^2 = ma$) d. $a$ ($b^2 = n \centerdot a$) ×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm
resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras: $\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$ $\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$ $\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E). Observações: ●É importante verificar nas respostas se a unidade de medida confere: centímetros. ●Para unidades de medida-distância consideramos apenas os valores positivos. ●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.
resposta:
Resolução: $\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I) $\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II) Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III) Substituindo (I) e (II) em (III) temos então: $\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$ $a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$ $\Rightarrow\;$
$a = 15$ $a = 3$ (inadequado porque $\;b\;\neq\;0\;$)
Substituindo $\;a\;=\;15\;$ em (I) e (II) $\;b\;=\;12\;$ $\;c\;=\;9\;$ Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$
Na figura, calcule "$\;x\;$" em função de $\;a\;$.
resposta: Resolução: $\;z^2\; = a^2 + a^2$ $\;y^2\; = z^2 + a^2 \; \Longrightarrow\; y^2 \; = a^2 + a^2 + a^2$ $\;w^2\; = y^2 + a^2\; \; \Longrightarrow\; w^2 = a^2 + a^2 + a^2 + a^2$ $\;x^2\; = w^2 + a^2 \;\Longrightarrow \; x^2 \; = 5 \centerdot a^2$ então Resposta: $\;x\; = \; a \sqrt{5}$ Observe que $\;x\; = a \centerdot \sqrt{n + 1}\;$, sendo $\;n\;$ o número de triângulos retângulos. ×
Na figura, $\;\overline{AD}\;$ é bissetriz interna relativa ao lado $\;\overline{BC}\;$. Calcule a medida do segmento $\;\overline{AD}\;$, sendo $\;AB \;= 6 cm$, $\;AC\; = 10 cm$ e $\;m(A\hat{B}C) = 90^o$.
resposta:
Resolução: Observação: O teorema da bissetriz versa que a reta bissetriz de um dos ângulos do triângulo divide o lado oposto a este ângulo em dois segmentos proporcionais às medidas dos lados adjacentes ao ângulo.
Pelo Teorema de Pitágoras: $(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^{2} \;\Rightarrow $ $\;10^2\;= \;6^2 + (\overline{BC})^2 \; \Rightarrow \;\overline{BC} = \sqrt{64} \;\Longrightarrow \; \overline{BC} = 8$ portanto, na figura $\;a + b\; =\; 8$ Pelo Teorema da Bissetriz Interna, $\frac{6}{a}\; = \;\frac{10}{b}$$\Rightarrow 5a - 3b \;=\;0$ então: $\begin{align} 3a + 3b = 24 \phantom{XXXX} (I) \\ \;5a - 3b =\; 0 \phantom{XXXX}(II) \end{align}$ Somando (I) e (II) $\Longrightarrow 5a + 3a = 24 \Longrightarrow$ $\;a \; = 3\;$ e $\;b\;=\;5$ Usando o teorema de Pitágoras no triângulo retângulo ABD: $\;h^2 = 6^2 + 3^2 \;\;\Rightarrow h^2 \;= 36 + 9 \;\;\Rightarrow h\;=\; 3\sqrt{5} $
Resposta: A medida do segmento $\;\overline{AD}\;$ é $\;3\sqrt{5}\;cm$ ×
Numa sequência de três números naturais (a , b , c) , os termos são chamados de "Números Pitagóricos" se forem tais que c² = a² + b² . Assinale a alternativa onde só existem Números Pitagóricos:
(PUC - 1973) Sabendo-se que o triângulo $\phantom{X}ABC\phantom{X}$ é retângulo e $\;\overline{AH}\,=\,h\;$ é a medida da altura do triângulo, quais das relações são válidas:
(ENERJ) Entre duas torres de 13 m e 37 m de altura existe na base uma distância de 70 m. Qual a distância entre os extremos sabendo-se que o terreno é plano?
(USP) Na figura, temos a representação de um retângulo inscrito num setor de $\;90^o\;$ e de raio $6m$. Medindo o lado OA do retângulo $\;\frac{2}{3}\;$ do raio, o produto $OA\;\times\;AB\;$ é:
(USP) São conhecidos os seguintes elementos de um triângulo $ABC$: $\;\measuredangle\; CAB = 30^o\;$; $\;AB = 8m\;$;$\;CB = 5m\;$. Pode-se afirmar que:
a) $AC\;=\;(2\sqrt{3}\;-\;3)\;m$ é a única solução. b) $AC\;=\;(2\sqrt{3}\;+\;3)\;m$ é a única solução. c) $AC\;=\;(4\sqrt{3}\;-\;2)\;m\; $ ou $\;AC\;=\;(4\sqrt{2}\;+\;3)\;m\;$ d) $AC\;=\;(2\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(2\sqrt{3}\;+\;3)\;m\;$ e) $AC\;=\;(4\sqrt{3}\;-\;3)\;m\; $ ou $\;AC\;=\;(4\sqrt{3}\;+\;3)\;m\;$
O lampião, representado na figura, está suspenso por duas cordas perpendiculares presas ao teto. Sabendo-se que essas cordas medem 1/2 e 6/5, a distância do lampião ao teto é:
(UF UBERLÂNDIA - 1980) Num triângulo ABC, o ângulo $\,\hat{A}\,$ é reto. A altura $\,h_A\,$ divide a hipotenusa $\;a\;$ em dois segmentos $\,m\,$ e $\,n\;(m\,> \,n)\,$. Sabendo-se que o cateto $\,b\,$ é o dobro do cateto $\,c\,$, podemos afirmar que $\,\dfrac{m}{n}\,$ é igual a: