Lista de exercícios do ensino médio para impressão
Sejam $\,A\,=\, \lbrace 5\rbrace \,$ e $\,B\,=\, \lbrace 3, 7 \rbrace \,$. Todas as Relações Binárias de $\,A\,$ em $\,B\,$ são:
a)
$\, \lbrace(5; 3) \rbrace \,$,$\, \lbrace (5; 7) \rbrace \,$ e $\, \lbrace(5; 3), (5; 7) \rbrace \,$
b)
$\,\varnothing\,$, $\, \lbrace (5; 3)\rbrace \,$, $\, \lbrace (5; 7)\rbrace \,$ e $\,A\,\times \,B$
c)
$\, \lbrace (5;3) \rbrace \;$ e $\; \lbrace (5; 7)\rbrace \,$
d)
$\,\varnothing\,$, $\,\lbrace \, (3; 5)\,\rbrace\,$, $\,\lbrace \, (7; 5)\,\rbrace\;$ e $\;A\,\times\,B$
e)
$\,\varnothing\,$, $\,\lbrace \, (5; 3)\,\rbrace\;$ e $\;\lbrace \, (5; 7)\,\rbrace\,$

 



resposta: (D)
×
Dados $\,A\,=\,\lbrace \, 2, 3, 4 \,\rbrace\,$ e $\, B\,=\,\lbrace \, 3, 4, 5, 6\,\rbrace\,$, seja $\,f\,$ a Relação Binária de $\,A\,$ em $\,B\,$ tal que $\,f\,=\,\lbrace \, (x; y)\,\in \,A \times B \,\mid x\;$divide$\; y \,\rbrace\,$
Então:
a)
$\,f\,=\,\lbrace \,(2;2), (3;3), (4;4) \,\rbrace\,$
b)
$\,f\,=\,\lbrace \, (3;3), (4;4)\,\rbrace\,$
c)
$\,f\,=\,\varnothing$
d)
$\,f\,=\,\lbrace \,(2;4), (2;6), (3;3), (3;6), (4;4) \,\rbrace\,$
e)
$\,f\,=\,\lbrace \, (4;2), (6;2),(3;3), (6;3), (4;4) \,\rbrace\,$

 



resposta: (D)
×
Se $\,n(A)\,=\,m\,$ e $\,n(B)\,=\,p\,$, então o número de Relações Binárias de $\,A\,$ em $\,B\,$, que não são vazias, é:
a)
$\,m \centerdot p$
b)
$\,m \centerdot p \, - \,1$
c)
$\,2^{m \centerdot p}\;$
d)
$\,2^{m \centerdot p} - 1$
e)
$\,2^{m \centerdot p - 1}$
 
 

 



resposta: (D)
×
(PUCC - 1982) Dados os conjuntos $A\,=\,\lbrace \,3,\, 4,\, 6 \,\rbrace\,$, $\;B\,=\,\lbrace \,1,\, 2\,\rbrace\,$ e $\,C\,=\,\lbrace \,3,\, 6,\, 9,\,12 \,\rbrace\,$, determine o conjunto $\,(C\,-\,A)\, \times\,B\,$.


 



resposta: $\,(C\,-\,A)\, \times\,B\; = \,\lbrace \, 9,12\,\rbrace\,\times \,\lbrace \, 1,2\,\rbrace\;=\;\,\lbrace \, (9;1),(9;2),(12;1),(12;2)\,\rbrace\,$

×
Em relação ao gráfico a seguir que representa uma relação binária de $\,A\,$ em $\,B\,$, responda as questões:
a)
Se o gráfico representa ou não uma função de $\,A\,$ em $\,B\,$;
b)
Em caso afirmativo, determinar o DOMÍNIO, o CONTRADOMÍNIO e o CONJUNTO IMAGEM da mesma.
gráfico cartesiano de uma relação binária entre conjuntos

 



resposta: não é uma função.

×
Dados os conjuntos $\;A\,=\,\lbrace\,2;\,4\,\rbrace\;$ e $\;B\,=\,\lbrace\,1;\,3;\,5\,\rbrace\;$ construa a relação binária $\;f\;$ de A em B , tal que $\phantom{X}f\;=\;\lbrace\,(x; y)\, \in \, A\,\times\,B\;|\;x\,>\,y\,\rbrace\phantom{X}$

 



resposta: {(2;1);(4;1);(4;3)}
×
Veja exercÍcio sobre:
relação binária entre conjuntos
funções