(FACULDADES OBJETIVO) Qual o valor de $\phantom{X}\dfrac{\;\sqrt{9\;}\,-\,\sqrt[\Large 3]{-8\;}\,+\,(\dfrac{1}{2})^{\large 0}\;}{(-2)^{2}\,+\,\sqrt[\Large 3]{-27\;}}\phantom{X}$?
(FACULDADES OBJETIVO) Qual o valor da expressão $\phantom{X}\dfrac{\;\left( 4^{{}^{\large \frac{3}{2}}}\,-\,8^{{}^{\large \frac{2}{3}}} \right)^{\large \frac{3}{2}}\;}{\;\left[2^{{}^{\large 0}}\,+\,3^{{}^{\large -1}}\centerdot 6\,-\,(\dfrac{3}{4})^{{}^{\large 0}} \right]^{\large 2}\;}\phantom{X}$?
(MACKENZIE) Qual o valor de $\phantom{X}\left[ \sqrt[\LARGE 3]{\dfrac{\;(0,005)^{{}^{\Large 2}}\,\centerdot \,0,000075\;}{10}\;} \right] \div \left[ \dfrac{5\,\centerdot \,10^{{}^{\Large -4}}\,\centerdot 2^{{}^{\large -\frac{1}{3}}}}{3^{{}^{\large -\frac{1}{3}}}} \right]\phantom{X}$?
Racionalizar o denominador da fração $\phantom{X}\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\phantom{X}$
resposta:
DIFERENÇA DE QUADRADOS $\,\boxed{\;a^2\,-\,b^2\,=\,(a\,+\,b)\,\centerdot\,(a\,-\,b)\,}$
Resolução: Multiplicamos o numerador e o denominador da fração por $\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,$ $\,\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\;=$ $\,\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\,\centerdot\,\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}\,=$ $\,\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;\left[\,2\,+\,\sqrt{3}\,+\,\sqrt{7}\,\right]\,\centerdot\,\left[\,\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,\right] \;}\,=$ $\,\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;(2\,+\sqrt{3\,})^2\,-\,(\sqrt{7\,})^2\;}\,=$ $\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;4\,+\,2\,\centerdot\,2\,\centerdot\,\sqrt{3\,}\,+\,3\,-\,7\;}\,=$ $\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;4\sqrt{3\,}\;}\,=$ $\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\;\sqrt{3\,}\;}\,=$ $\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\;\sqrt{3\,}\;}\,\centerdot\,\dfrac{\;\sqrt{3\,}\;}{\;\sqrt{3\,}\;}\,=$ $\dfrac{\,2\sqrt{3\,}\,+\,(\sqrt{3\,})^2\,-\,\sqrt{3\,} \centerdot \sqrt{7\,}\,}{(\sqrt{3\,})^2}\,=$ $\,\dfrac{\,2\sqrt{3\,}\,+\,3\,-\,\sqrt{21\,}\,}{3}\;$
Sendo $\;a\;$ e $\;b\;$ números reais estritamente positivos e distintos, mostrar que $\phantom{X}\dfrac{a\,-\,b}{\;\sqrt{a\,}\,-\,\sqrt{b\,}\;}\,=\,\sqrt{a\,}\,+\,\sqrt{b\,}\phantom{X}$
resposta:
DIFERENÇA DE QUADRADOS $\,\boxed{\;a^2\,-\,b^2\,=\,(a\,+\,b)\,\centerdot\,(a\,-\,b)\,}$
(CESGRANRIO - 1982) Sendo $\phantom{X}x\;\gt\;0\phantom{X}$, com o denominador racionalizado, a razão $\phantom{X}\dfrac{\sqrt{\;x\;}}{\;\sqrt{\;x\,+\,1\;}\,+\,\sqrt{\;x\;}\;}\phantom{X}$ é igual a:
Racionalizar o denominador da fração $\phantom{X}\dfrac{3}{\;\sqrt[\Large 5]{8\;}\;}\phantom{X}$.
resposta:
Resolução: 1) notar que $\phantom{X}\sqrt[\Large 5]{8\;}\phantom{X}$ é o mesmo que $\phantom{X}\sqrt[\Large 5]{2^3\;}\phantom{X}$ 2) multiplicar o numerador e o denominador da fração por $\phantom{X}\sqrt[\Large 5]{2^2\;}\phantom{X}$ , pois $\phantom{X}\sqrt[\Large 5]{2^3\;}\,\centerdot\,\sqrt[\Large 5]{2^2\;}\,=$ $\,\sqrt[\Large 5]{2^3\,\centerdot\,2^2\;}\,=\,\sqrt[\Large 5]{2^5\;}\phantom{X}$ Assim $\;\dfrac{3}{\;\sqrt[\Large 5]{8\;}\;}\,=$ $\,\dfrac{3}{\;\sqrt[\Large 5]{2^3\;}\;}\,=$ $\,\dfrac{3}{\;\sqrt[\Large 5]{8\;}\;}\,\centerdot\,\dfrac{\;\sqrt[\Large 5]{2^2\;}\;}{\;\sqrt[\Large 5]{2^2\;}\;}\,=$ $\,\dfrac{\;3\,\centerdot\,\sqrt[\Large 5]{2^2\;}}{\;\sqrt[\Large 5]{2^5\;}\;}\,=$ $\,\dfrac{\;3\,\centerdot\,\sqrt[\Large 5]{4\;}}{\;2\;}\,$