(CESCEA - 1972) Uma das diagonais de um quadrado tem extremidades $\;A\,\equiv\,(1,1)\;$ e $\;C\,\equiv\,(3,3)\;$. As coordenadas dos outros dois vértices do quadrado são:
(MACKENZIE - 1978) Quatro círculos de raio unitário, cujos centros são vértices de um quadrado, são tangentes exteriormente dois a dois. A área da parte sombreada é:
(V. UNIF. RS - 1980) Na figura, $\phantom{X}\stackrel \frown{AB} \phantom{X}$ é um arco de uma circunferência de raio 1 . A área do trapézio retângulo $\phantom{X}BCDE\phantom{X}$ é:
Determinar o valor do lado $\;\overline{AC}\;$ na figura abaixo:
resposta:
LEI DOS COSSENOS: "Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".
Determinar o ponto no eixo 0x equidistante dos pontos A (6 , 5) e B (-2 , 3) .
resposta: Resolução: O ponto P equidistante de A e B está no eixo x , portanto sua ordenada é nula e podemos representar P (x , 0) . Da equidistãncia:
$\;\begin{array}{rcr} \text{distância}_{PA} = \text{distância}_{PB} \phantom{XXXXXX} & \\ \sqrt{(x\,-\,6)^2\,+\,(0\,-\,5)^2}\,=\,\sqrt{(x\,+\,2)^2\,+\,(0\,-\,3)^2}& \\ \end{array} $
Elevar os lados ao quadrado: $\,x^2\,-\,12x\,+\,36\,+\,15\,=\,x^2\,+\,4x\,+\,4\,+\,9\,$ desenvolvendo a equação temos $\,\boxed{x\,=\,3}\,$. Se x = 3 então P(x,0) é o ponto P(3;0) Resposta: $\;\boxed{\;(3\,;\,0)\;}$
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.
resposta:
Considerações:
A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.
Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
Num prisma quadrangular regular, a área lateral mede 32 m² eo volume 24 cm³ . Calcular as suas dimensões.
resposta:
Um prisma é chamado quadrangular quando suas bases são quadrados.
Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETOe suas bases são POLÍGONOS REGULARES.
RETO → as arestas laterais são todas perpendiculares aos planos das bases
REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.
A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases. A área total de um prisma é a soma da área lateral às áreas das bases. O volume de um prisma é a área da base multiplicada pela altura do prisma.
Resolução: Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
aresta da base igual a 3 m e altura igual a 8/3 m ×
(COMSART - 1973) Três números, em progressão aritmética, apresentam uma soma igual a 9 e uma soma de seus quadrados igual a 59. Estes três números são dados por:
(U.C.SALVADOR - 1991) Na figura ao lado ABCD é um losango e A é o centro da circunferência de raio 4 cm. A área desse losango, em centímetros quadrados, é:
(FATEC - 1979) Na figura abaixo, ABFG e BCDE são dois quadrados com lados, respectivamente, de medida a e b. Se $\;\overline{AG}\,=\,\overline{CD}\,+\,2\;\,$ e o perímetro do triângulo ACG é 12, então, simultaneamente, a e b pertencem ao intervalo:
Num triângulo $\;ABC\;$, o lado $\,a\,$ é oposto ao ângulo de vértice em $\,A\,$, o lado $\,b\,$ é oposto ao ângulo de vértice em $\,B\,$ e o lado $\,c\,$ é oposto ao ângulo de vértice em $\,C\,$. Tem-se que $\;a^2\,=\,b^2\,+\,c^2\,-\,bc\;$. Calcular a medida do ângulo $\;\hat{A}\;$.
resposta:
LEI DOS COSSENOS: "Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".
Resolução: $a^2 = b^2 + c^2 - 2(b)(c) cos\hat{A}$ (lei dos cossenos) Comparando-se a relação da lei dos cossenos com a relação fornecida no enunciado, têm-se que :$\;(bc)\centerdot 2cos\hat{A}\,=\,(bc)\;\Rightarrow\;2cos\hat{A}\,=\,1\;\Rightarrow\;cos\hat{A}\,=\,\dfrac{1}{2}\,$ $\,\Rightarrow\;\boxed{\,\hat{A}\,=\,60^o\,}$ Resposta:
(ITA) Os lados de um triângulo medem a , b e c (centímetros). Qual o valor do ângulo interno deste triângulo, oposto ao lado que mede a centímetros, se forem satisfeitas as relações: 3a = 7c e 3b = 8c.
a)
30°
b)
60°
c)
45°
d)
120°
e)
135°
resposta: Alternativa B
LEI DOS COSSENOS: "Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".
Resolução:
Na figura, um triângulo genérico $\,\triangle ABC\,$ onde deseja-se a medida do ângulo $\,\hat{A}\,$.
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I) 2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II) 3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III) então substituindo em (I) as assertivas (II) e (III) temos que: $\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
resposta:
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
Dizer que o cilindro é equilátero significa que sua secção meridiana é um quadrado. Portanto a altura do cilindro é igual ao diâmetro da base (2R).A altura do prisma é a mesma do cilindro (2R).
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro
resposta:
Considerações:
Eixo do cilindro é a reta que passa pelos centros das bases do cilindro. Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro. Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases. O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.
A secção meridiana de um cilindro equilátero é um quadrado.
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$. $\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.
A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais: Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Racionalizar o denominador da fração $\phantom{X}\dfrac{\sqrt{2\,}}{\;2\,+\,\sqrt{3\,}\;}\phantom{X}$
resposta: Resolução: Sabendo que (a + b)(a - b) = a² - b², para racionalizar o denominador da fração acima devemos multiplicar o numerador e o denominador pelo valor $\;2\,-\,\sqrt{3}\;$ $\dfrac{\sqrt{2}}{\;2\,+\,\sqrt{3}\;}\;=\;\dfrac{\sqrt{2}}{\;2\,+\,\sqrt{3}\;}\,\centerdot\,\dfrac{2\,-\,\sqrt{3}}{\;2\,-\,\sqrt{3}\;}\,=\,\dfrac{\;\sqrt{2}(2\,-\,\sqrt{3})\;}{2^2\,-\,(\sqrt{3})^2}\,=$ $\,\dfrac{\;\sqrt{2}(2\,-\,\sqrt{3})\;}{4\,-\,3}\;=\;\dfrac{\;\sqrt{2}(2\,-\,\sqrt{3})\;}{1}\;=\;\sqrt{\,2\,}\,(2\,-\,\sqrt{\,3\,})\,=$ $\,2\sqrt{2\,}\,-\,\sqrt{6\,}$
Racionalizar o denominador da fração $\phantom{X}\dfrac{2}{\;\sqrt{5\,}\,-\,\sqrt{3\,}\;}\phantom{X}$
resposta: Resolução: Sabendo que (a + b)(a - b) = a² - b², para racionalizar o denominador da fração acima devemos multiplicar o numerador e o denominador pelo valor $\;\sqrt{5\,}\,+\,\sqrt{3}\;$ $\dfrac{2}{\;\sqrt{5\,}\,-\,\sqrt{3}\;}\;=\;\dfrac{2}{\;\sqrt{5\,}\,-\,\sqrt{3}\;}\,\centerdot\,\dfrac{\sqrt{5\,}\,+\,\sqrt{3}}{\;\sqrt{5\,}\,+\,\sqrt{3}\;}\,=$ $\,\dfrac{\;2(\sqrt{5\,}\,+\,\sqrt{3})\;}{(\sqrt{5\,})^2\,-\,(\sqrt{3})^2}\,=$ $\,\dfrac{\;2(\sqrt{5\,}\,+\,\sqrt{3})\;}{5\,-\,3}\;=\;\dfrac{\;2(\sqrt{5\,}\,+\,\sqrt{3})\;}{2}\;=$ $\;\sqrt{\,5\,} + \sqrt{3\,} $
Racionalizar o denominador da fração $\phantom{X}\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\phantom{X}$
resposta:
DIFERENÇA DE QUADRADOS $\,\boxed{\;a^2\,-\,b^2\,=\,(a\,+\,b)\,\centerdot\,(a\,-\,b)\,}$
Resolução: Multiplicamos o numerador e o denominador da fração por $\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,$ $\,\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\;=$ $\,\dfrac{4}{\;2\,+\,\sqrt{3\,}\,+\,\sqrt{7\,}}\,\centerdot\,\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}\,=$ $\,\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;\left[\,2\,+\,\sqrt{3}\,+\,\sqrt{7}\,\right]\,\centerdot\,\left[\,\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,\right] \;}\,=$ $\,\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;(2\,+\sqrt{3\,})^2\,-\,(\sqrt{7\,})^2\;}\,=$ $\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;4\,+\,2\,\centerdot\,2\,\centerdot\,\sqrt{3\,}\,+\,3\,-\,7\;}\,=$ $\dfrac{4(\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,)}{\;4\sqrt{3\,}\;}\,=$ $\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\;\sqrt{3\,}\;}\,=$ $\dfrac{\,2\,+\,\sqrt{3}\,-\,\sqrt{7}\,}{\;\sqrt{3\,}\;}\,\centerdot\,\dfrac{\;\sqrt{3\,}\;}{\;\sqrt{3\,}\;}\,=$ $\dfrac{\,2\sqrt{3\,}\,+\,(\sqrt{3\,})^2\,-\,\sqrt{3\,} \centerdot \sqrt{7\,}\,}{(\sqrt{3\,})^2}\,=$ $\,\dfrac{\,2\sqrt{3\,}\,+\,3\,-\,\sqrt{21\,}\,}{3}\;$
Sendo $\;a\;$ e $\;b\;$ números reais estritamente positivos e distintos, mostrar que $\phantom{X}\dfrac{a\,-\,b}{\;\sqrt{a\,}\,-\,\sqrt{b\,}\;}\,=\,\sqrt{a\,}\,+\,\sqrt{b\,}\phantom{X}$
resposta:
DIFERENÇA DE QUADRADOS $\,\boxed{\;a^2\,-\,b^2\,=\,(a\,+\,b)\,\centerdot\,(a\,-\,b)\,}$
São dadas duas lentes L1 e L2 e um feixe cilíndrico de luz. O ponto F representa o foco imagem de L1 e também o foco objeto de L2. Sabendo que cada quadradinho na figura representa um quadrado real de 2,0 cm, pede-se:
a)
as distâncias focais de L1 e L2;
b)
construir o trajeto dos raios de luz e obter a relação entre os diâmetros dos feixes emergente e incidente.
resposta: a) FL1 = 8,0 cm e FL2 = 4,0 cm b)$\,\dfrac{d_{\text emergente}}{d_{\text incidente}}\;=\;\dfrac{\;1\;}{2}\,$ ×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 .Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°
resposta: a)
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$ b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$ c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4. ×
(MAPOFEI - 1974) Verificar se existem valores de k para os quais o trinômio (k + 2)x² - (2k - 1)x - 3 seja expresso por uma soma de quadrados.
(E E LINS - 1966) Calcular p para que o polinômio $\phantom{X}4x^4\,-\,8x^3\,+\,8x^2\,-\,4(p\,+\,1)x\,+\,(p\,+\,1)^2\phantom{X}$ seja o quadrado perfeito de um polinômio racional inteiro em $\,x\,$.
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo, é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do 1º quadrado mede 6. Calcular a soma das áreas destes quadrados.
No triângulo da figura são conhecidos os ângulos  = 60° e $\,\hat{B}\,$ = 75° e também o lado c = 13 m.
Pede-se: a) a medida em graus do ângulo C; b) a medida em metros dos lados a e b; c) a área do triângulo ABC em metros quadrados.
resposta:
Resolução: a) A soma dos ângulos internos de um triângulo qualquer é igual a 180°, então $ \phantom{X} \require{cancel}\hat{A}\,+\,\hat{B}\,+\,\hat{C}\,=\,180^o\;\Rightarrow $ $\;\hat{C}\,=\,180^o\,-\,(\hat{A}\,+\,\hat{B})\,=$ $\,180^o\,-\,135^o\,=\,45^o\;$
b) Pelo Teorema dos Senos temos que $\,\dfrac{b}{\,sen \hat{B}\,}\,=\,\dfrac{c}{\,sen \hat{C}\,}\,=\,\dfrac{a}{\,sen \hat{A}\,}\,$, então podemos concluir que $\,b\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{B}\,}{sen\,\hat{C}}\phantom{X}$ e $\phantom{X}a\,=\,\dfrac{\,c\,\centerdot\,sen\,\hat{A}\,}{sen\,\hat{C}}\,$ Lembrar que $\,sen(a\,+\,b)\,=$ $\,sen\,a\,\centerdot\,cos\,b\,+\,sen\,b\,\centerdot\,cos\,a\,$ $\,sen\,\hat{A}\,=\,sen75^o\,$ $=\,sen\,(45^o\,+\,30^o)\,=$ $\,sen\,45^o\,\centerdot\,sen\,30^o\,+\,sen\,30^o\,\centerdot\,sen\,45^o\,=\,$ $\dfrac{\,\sqrt{\,2\;}}{2}\,\dfrac{\,\sqrt{\,3\;}}{2} + \dfrac{\,\sqrt{\,3\;}}{2}\,\dfrac{\,\sqrt{\,2\;}}{2}\, =$ $ \dfrac{\,2\sqrt{\,6\;}}{4} = \dfrac{\,\sqrt{\,6\;}}{2}$ $\,sen\,\hat{B}\,=\,sen\,60^o\,=\,\dfrac{\,\sqrt{\,3\;}}{2}\,$ $\,sen\,\hat{C}\,=\,sen45^o\,=\,\dfrac{\,\sqrt{\,2\;}}{2}\,$
Unindo-se as extremidades dos arcos da forma $\phantom{X}\pm \dfrac{\,\pi\,}{\,3\,}\,+\,\dfrac{\,n\pi\,}{\,2\,}\phantom{x} (n\;\in\;\mathbb{Z})\phantom{X}$ obtém-se: