Lista de exercícios do ensino médio para impressão
Descreva através de uma propriedade característica dos elementos cada um dos conjuntos seguintes:
A={0,2,4,6,8,...}
B={0,1,2,...9}
C={Brasília, Rio de Janeiro, Salvador}

 



resposta: A={x | x é inteiro, par e não negativo}
B={x | x é algarismo arábico}
C={x | x é nome de cidade que já foi capital do Brasil}

×
Descreva por meio de uma propriedade dos elementos:
$A = \lbrace+1, -1, +2, -2, +3, -3, +6, -6\rbrace$
$B = \lbrace0, -10, -20, -30, -40, ...\rbrace$
$C = \lbrace1, 4, 9, 16, 25, 36, ...\rbrace$
$D = \lbrace Lua \rbrace$

 



resposta:
×
(PUC) Seja $\,D\,=\,\lbrace \, 1, \,2, \,3, \,4, \,5 \,\rbrace\,$, e $\,f\,:\, D \rightarrow \mathbb{R}\;$ a função definida por $\,f(x)\,=\,(x\,-\,2)\centerdot(x\,-\,4)\,$. Então:
a)
$f\,$ é sobrejetora
b)
$f\,$ é injetora
c)
$f\,$ é bijetora
d)
O conjunto imagem de $\,f\,$ possui 3 elementos somente
e)
$\,Im(f)\,=\,\lbrace \, -1,\,0,\,1 \,\rbrace\,$

 



resposta: (D)
×
(USP) Dizemos que uma função real é par se $\,f(x)\,=\,f(-x)\,$ e que é ímpar se $\,f(x)\,=\,-f(-x)\,$.
Das afirmativas que seguem indique qual a falsa:
a)
O produto de duas funções ímpares é uma função ímpar.
b)
O produto de duas funções pares é uma função par.
c)
A soma de duas funções ímpares é uma função ímpar.
d)
A soma de duas funções pares é uma função par.
e)
Alguma das afirmações anteriores é falsa.

 



resposta: alternativa A (é falsa)
×
(ITA) Com relação à função $\,f\,:\, \mathbb{R^{\large *}} \negthickspace \negthinspace {_+} \rightarrow \mathbb{R}_+\;$ tal que $\,f(b\,-\,a)\,=\,f(a)\,-\,f(b);\,\vee \negthickspace \negthickspace \negthickspace \negthinspace - a,b \,\in\, \, \mathbb{R^{\large *}} \negthickspace \negthinspace {_+} \,$, então:
a)
$\,f\,$ é decrescente em $\,\mathbb{R^{\large *}} \negthickspace \negthinspace {_+}\,$
b)
$\,f\,$ é crescente em $\,\mathbb{R^{\large *}} \negthickspace \negthinspace {_+}\,$
c)
$\,f\,$ é estritamente decrescente em $\,\mathbb{R^{\large *}} \negthickspace \negthinspace {_+}\,$
d)
$\,f\,$ é estritamente crescente em $\,\mathbb{R^{\large *}} \negthickspace \negthinspace {_+}\,$
e)
$\,f\,$ é constante em $\,\mathbb{R^{\large *}} \negthickspace \negthinspace {_+}\,$

 



resposta: (A)
×
(PUC) Uma função que verifica a propriedade
"qualquer que seja $\,x\,$, $\;f(-x)\,=\,-f(x)\,$" é:
a)
$f(x) \,=\, 2\phantom{X}$
b)
$f(x)\, =\, 2x$
c)
$f(x)\,=\,x^2\;$
d)
$\,f(x)\,=\,2^x\,$
e)
$\,f(x)\,=\, \operatorname{cos}(x)\,$
 
 

 



resposta: (B)
×
Resolver em $\,\mathbb{R}\,$ as inequações, aplicando as propriedades da desigualdade.
a)
$\,3x\,-\,6\,<\,0\,$
b)
$\,-3x\,+\,6\,<\,0\,$
c)
$\,6\,-\,2x\,\geqslant\,0\,$
d)
$\,x\,-\,3\,<\,x\,+\,3\,$
e)
$\,-x\,+3\,\leqslant \,x\,+\,3\,$
f)
$\,x\,-\,2\, > \,x\,+\,2\,$

 



resposta: Resolução:
a)
$\,3x\,-\,6\,<\,0\;\Rightarrow $ $ \; 3x\,<\,6\; \Rightarrow $ $ \;\boxed{x<2}\,$
b)
$\,-3x\,+\,6\, < \, 0 \; \Rightarrow $ $ \; -3x\, < \, -6 \;\Rightarrow $ $ \; \boxed{x > 2} \,$
c)
$\,6\,-\,2x\,\geqslant 0 \; \Rightarrow $ $ \; -2x\, \geqslant \,-6 \;\Rightarrow $ $ \boxed{x \leqslant 3}\,$
d)
$\,x\,-\,3\, < \, x\,+\,3 \; \Rightarrow $ $ \; 0x\, < 6 \;$ que ocorre para $\; \boxed{\,\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \,\in\, \, \mathbb{R} \,}\,$
e)
$\,-x\,+\,3\,\leqslant \,x\,+\,3\; \Rightarrow $ $ \,-2x \, \leqslant \, 0 \Rightarrow $ $ \boxed{x \geqslant 0}\,$
f)
$\,x\,-\,2\, > \, x\,+\,2 \; \Rightarrow $ $ \; 0x \, > \, 4 \; \Rightarrow $ $ \; \boxed{x \notin \mathbb{R}}\;$ ou $ \; \mathbb{S} \,=\, \varnothing \,$

×
Resolver a equação $\,{\large \binom{10}{2x}}\,=\,{\large \binom{10}{x\,+\,1}} \, \neq \, 0\,$

 



resposta:
Propriedade:
Os números binomiais $\,{\large \binom{n}{k}}\;$ e $\;{\large \binom{n}{n-k}}\;$ são chamados complementares e são iguais. Assim:
$\boxed{\,{\large \binom{n}{k}}\;=\;{\large \binom{n}{n-k}}\,}$

Resolução:
$\,\binom{10}{2x}\,=\,\binom{10}{x\,+\,1} \, \neq \, 0\;\Longleftrightarrow \;2x\,=\,x\,+\,1 \; \text{ ou } \; 2x\,+\,(x\,+\,1)\,=\,10\;\Longleftrightarrow$
$\,\Longleftrightarrow\;x\,=\,1\;\text{ ou }\; x\,=\,3\,$.
Resposta: $\,V\,=\,\lbrace\, 1, 3 \,\rbrace\,$

×
Calcular o valor da expressão:
$\,\frac{10 \, \left[ {\large \binom{3}{0}\,+\,\binom{3}{1}\,+\,\binom{3}{2}\,+\,\binom{3}{3} } \right]\,+\,2\,\left[\,{\large \binom{2}{2}\,+\,\binom{3}{2}\,+\,\binom{4}{2}} \right]}{\large \binom{2}{0}\,+\,\binom{3}{1}\,+\,\binom{4}{2}\,+\,\binom{5}{3}}\,$

 



resposta:
triângulo de Pascal ou Tartaglia
Pela propriedade da soma na linha do triângulo de Pascal (veja a figura), temos que:
$\,\binom{3}{0}\,+\,\binom{3}{1}\,+\,\binom{3}{2}\,+\,\binom{3}{3}\,=\,2^{\large{3}}\,=\,8$

Pela propriedade da soma na coluna do triângulo de Pascal, temos que:
$\,\binom{2}{2}\,+\,\binom{3}{2}\,+\,\binom{4}{2}\,=\,\binom{5}{3}\,=\,10$

Pela propriedade da soma na diagonal do triângulo de Pascal (veja a figura), temos que:
$\,\binom{2}{0}\,+\,\binom{3}{1}\,+\,\binom{4}{2}\,+\,\binom{5}{3}\,=\,\binom{6}{3}\,=\,20$

Então:
$\,\frac{10 \, \left[\large {\binom{3}{0}\,+\,\binom{3}{1}\,+\,\binom{3}{2}\,+\,\binom{3}{3}} \right]\,+\,2\,\left[\,\large {\binom{2}{2}\,+\,\binom{3}{2}\,+\,\binom{4}{2}} \right]\phantom{XX}}{ {\large \binom{2}{0}\,+\,\binom{3}{1}\,+\,\binom{4}{2}\,+\,\binom{5}{3}}}\,=\,$ $\,\dfrac{10\centerdot 8 \,+\, 2\centerdot 10}{20}\,=\,\dfrac{100}{20}\,=\,5$

5
×
Empregando as propriedades do triângulo de Pascal, achar o valor das seguintes somas:
a)
$\,{\Large \sum\limits_{p\,=\,0}^{10}} {\Large \binom{10}{p}}\,$
b)
$\,{\Large \sum\limits_{p\,=\,0}^{9}} {\Large \binom{10}{p}}\,$
c)
$\,{\Large \sum\limits_{p\,=\,2}^{9}} {\Large \binom{9}{p}}\,$
d)
$\,{\Large \sum\limits_{p\,=\,4}^{10}} {\Large \binom{p}{4}}\,$
e)
$\,{\Large \sum\limits_{p\,=\,5}^{10}} {\Large \binom{p}{5}}\,$
f)
$\,{\Large \sum\limits_{p\,=\,0}^{7}} {\Large \binom{3\,+\,p}{p}}\,$
g)
$\,{\Large \sum\limits_{p\,=\,0}^{3}} {\Large \binom{8\,+\,p}{p}}\,$

 



resposta:
a)
1024
b)
1023
c)
502
d)
462
e)
462
f)
330
g)
220

×
Sendo a reta a paralela à reta b, determine x nos casos:
a)
duas paralelas cortadas por uma transversal a 50 graus
b)
duas paralelas cortadas por uma transversal a 120 graus

 



resposta: 50° e 60°
×
Se as retas r e s são paralelas, determine x nos seguintes casos:
a)
retas paralelas r e s cortadas por uma transversal
b)
diagrama retas paralelas cortadas por uma transversal

 



resposta: 60° e 70°
×
As retas r e s dos casos representados nas figuras são paralelas entre si. Determine x e y.
a)
duas retas paralelas e duas transversais
b)
duas paralelas cortada por duas transversais perpendiculares entre si

 



resposta: a) x = 120° e y = 75° b) x = 20° e y = 50°
×
Assinale a alternativa incorreta:
a)
"Comprem-se todas as propriedades desta região" — se é partícula apassivadora;
b)
"Por onde se vai ao Museu de Arte?" — se é partícula de indeterminação do sujeito;
c)
"Os inimigos olham-se agora como amigos..." — se é objeto direto;
d)
"Os fugitivos se morriam de sede e fome..." — se é objeto direto;
e)
"A Lua se elevava nos céus..." — se é objeto direto

 



resposta: Alternativa D - em d) o se é partícula de realce ou expletiva.
×
Escrever na forma de um único radical a expressão $\phantom{X}\sqrt{3}\,\centerdot\,\sqrt[\large 3]{5}\phantom{X}$.

 



resposta:
Resolução:
1. Reduzir os radicais para o mesmo índice 6 — porque 6 é o mínimo múltiplo comum entre 2 e 3.
$\;\sqrt{3}\,=\,\sqrt[\large 2]{3^{\large 1}}\,$ $=\,\sqrt[\large 2 \centerdot 3]{3^{1\centerdot 3}}\,=\,\sqrt[\large 6]{3^{\large 3}}\,=\,\sqrt[\large 6]{27}\;$
$\;\sqrt[\large 3]{5}\,=\,\sqrt[\large 3]{5^{\large 1}}\,$ $=\,\sqrt[\large 2 \centerdot 3]{5^{1\centerdot 2}}\,=\,\sqrt[\large 6]{5^{\large 2}}\,=\,\sqrt[\large 6]{25}\;$
2. Usar a primeira propriedade das raízes ($\;\sqrt[\large n]{a}\,\centerdot\,\sqrt[\large n]{b}\,=\,\sqrt[\large n]{a\centerdot b}\;$)
$\;\sqrt[\large 2]{3}\,\centerdot\,\sqrt[\large 3]{5}\,=\,\sqrt[\large 6]{27}\,\centerdot\,\sqrt[\large 6]{25}\,$ $=\,\sqrt[\large 6]{27\,\centerdot\,25}\,=\,\sqrt[\large 6]{675}\;$
Resposta:
$\;\sqrt[\large 6]{675}\;$
×
Sendo
$\phantom{X}M\;=\;\begin{pmatrix} a & b & c \\ m & n & p \\ x & y & z \end{pmatrix} \,$;
$\phantom{X}A\;=\;\begin{pmatrix} 2m & 2n & 2p \\ 3a & 3b & 3c \\ x & y & z \end{pmatrix} \,$

$\phantom{X}B\,=\,2M\phantom{X}$ e $\phantom{X}detM\,=\,5\phantom{X}$ calcular:

a) $\,detA\,$b) $\,detB\,$


 



resposta: a)detA = -30; b)detB = 40
×
Qual das propriedades abaixo é uma característica das partículas dispersas das soluções?
a)
são visíveis ao microscópio comum.
b)
são retidas somente por ultrafiltros laboratoriais
c)
sedimentam muito lentamente por ação da gravidade
d)
são retidas no filtro comum
e)
não são visíveis ao microscópio.

 



resposta: (E)
×
Sendo a , b e c números reais positivos, desenvolver as expressões abaixo.
a)
$\;log_{{}_{\Large \,2\,}}\left(\dfrac{\,2ab\,}{c}\right)\,$
b)
$\;log_{{}_{\Large \,3\,}}\left(\dfrac{\,a^{\large 3}b^{\large 2}\,}{c^{\large 4}}\right)\,$
c)
$\;log\,\left(\dfrac{\,a^{\large 3}\,}{\,b^{{}^{\Large 2}}\,\centerdot\,\sqrt{\,c\,}\,}\right)\,$

 



resposta: a) $1\,+\,log_2\,a\,+\,log_2\,b\,-\,log_2\,c$ b) $3\,log_3\,a\,+\,2\,log_3\,b\,-\,4\,log_3\,c$ c) $\,3\,log\,a\,-\,2\,log\,b\,-\,\dfrac{1}{2}\,log\,c$
×
Desenvolver as expressões abaixo aplicando as propriedades dos logaritmos.
a)
$\;log_{{}_{\Large \,5\,}}(\dfrac{\,5a\,}{bc})\,$
b)
$\;log_{{}_{\Large \,3\,}}(\dfrac{\,ab^2\,}{c})\,$
c)
$\;log_{{}_{\Large \,2\,}}\left(\dfrac{\,a^2\,\sqrt{\,b\,}\,}{\sqrt[\large \,3\,]{\,c\,}} \right) $
d)
$\;log_{{}_{\Large \,3\,}}\left(\dfrac{\,a\,\centerdot\,b^3\,}{c\,\centerdot\,\sqrt[\large \,3\,]{\,a^2\,}}\right)\,$
 
e)
$\;log\sqrt{\dfrac{\,ab^3\,}{c^2}}\,$
f)
$\;log_{{}_{\Large \,3\,}}\sqrt[\Large 3\,]{\dfrac{\,a\,}{\,b^2\,\centerdot\,\sqrt{\,c\,}}}\,$
 
g)
$\;log_{{}_{\Large \,2\,}}\sqrt{\dfrac{\,4a\,\sqrt{\,ab\,}}{\,b\;\sqrt[\Large 3\,]{\,a^2b\,}}}\,$
 
h)
$\;log\,\left(\sqrt[\LARGE 3\,]{\dfrac{\,a^{\large 4}\,\sqrt{\,ab\,}}{\,b^2\;\sqrt[\Large 3\,]{\,bc\,}}}\right)^{\Large 2}\,$

 



resposta: a) $\,1\,+\,log_5a\,-\,log_5b\,-log_5c\,$ b) $\,log_3a\,+\,2\,log_3b\,-\,log_3c\,$ c) $2\,log_2a\,+\,\frac{1}{2}log_2b\,-\,\frac{1}{3}log_2c$ d) $\,\frac{1}{3}\,log_3a\,+\,3\,log_3b\,-\,log_3c$ e) $\frac{1}{2}\,log\,a\,+\,\frac{3}{2}log\,b\,-\,log\,c$ f) $\frac{1}{3}\,log\,a\,-\,\frac{2}{3}log\,b\,-\,\frac{1}{6}log\,c$ g) $\,2\,+\,\frac{5}{12}log_2a\,-\,\frac{5}{12}log_2b\,$h) $\,3\,log\,a\,-\,\frac{11}{9}log\,b\,-\,\frac{2}{9}log\,c\,$
×
Calcular:
a) $\,antilog_{\,2\,}(log_2\,3)\;$ b)$\,antilog_{\,3\,}(log_3\,5)\,$

 



resposta: a) 3 b) 5
×
Desenvolver aplicando as propriedades dos logaritmos. Obs. a > b > c > 0 .
a)
$\;log_{{}_{\Large \,2\,}}\dfrac{2a}{\;a^2\,-\,b^2\;}\;$ 
b)
$\;log_{{}_{\Large \,2\,}}\dfrac{a^2\,\sqrt{\,bc\,}}{\;\sqrt[\LARGE 5]{\,(a\,+\,b)^3}\;}\;$
c)
$\;log\left(c\,\centerdot\,\sqrt[\LARGE 3]{\dfrac{\;a(a\,+\,b)^2}{\sqrt{\;b\;}}} \right)\;$
d)
$\;log\left(\dfrac{\;\sqrt[\Large 5]{a(a\,-\,b)^2}\;}{\sqrt{a^2\,+\,b^2}} \right)\;$

 



resposta: a) b) c) d)
×
Sendo a, b e c reais positivos, escreva as expressões cujos desenvolvimentos logaritmicos são dados.
a)
$\;log_{{}_{\Large \,2\,}}a\,+\,log_{{}_{\Large \,2\,}}b\,-\,log_{{}_{\Large \,2\,}}c\;$
b)
$\;2\,log\,a\;-\;log\,b\;-\;3\,log\,c\;$
c)
$\;2\,-\,log_{{}_{\Large \,3\,}}a\,+\,3\,log_{{}_{\Large \,3\,}}b\,-\,2\,log_{{}_{\Large \,3\,}}c\;$
d)
$\;\dfrac{\;1\;}{2}\,log\;a\,-\;2\,log\,b\;-\;\dfrac{\;1\;}{3}\,log\,c\;$
e)
$\;\dfrac{\;1\;}{3}\,log\;a\,-\;\dfrac{\;1\;}{2}\,log\,c\;-\;\dfrac{\;3\;}{2}\,log\,b\;$
f)
$\;2\;+\;\dfrac{\;\,1\,\;}{3}\,log_{{}_{\Large \,2\,}}a\,+\,\dfrac{\;\,1\,\;}{6}\,log_{{}_{\Large \,2\,}}b\,-\,log_{{}_{\Large \,2\,}}c\;$
g)
$\;\dfrac{\;1\;}{4}(log\,a\;-\;3\,log\,b\;-\;2\,log\,c)\;$

 



resposta: a) b) c) d)
×
Se $\;log\,2\;=\;a\phantom{X}$ e $\phantom{X}log\,3\;=\;b\;$, colocar em função de $\,a\,$ e $\,b\,$ os seguintes logaritmos decimais:
a)
$\,log\,6\,$ 
b)
$\,log\,4\,$
c)
$\,log\,12\,$
d)
$\,log\,\sqrt{\,2\,}\,$
e)
$\,log\,0,5\,$
f)
$\,log\,20\,$
g)
$\,log\,5\,$
h)
$\,log\,15\,$

 



resposta: a) b) c) d)
×
Desenvolver as potências (utilizando as propriedades do triângulo de Pascal).
a)
$\phantom{X}(x\,+\,y)^0\phantom{X}$
b)
$\phantom{X}(x\,+\,y)^1\phantom{X}$
c)
$\phantom{X}(x\,+\,y)^2\phantom{X}$
d)
$\phantom{X}(x\,+\,y)^3\phantom{X}$
e)
$\phantom{X}(x\,+\,y)^4\phantom{X}$
f)
$\phantom{X}(x\,+\,y)^5\phantom{X}$
g)
$\phantom{X}(x\,+\,y)^7\phantom{X}$
h)
$\phantom{X}(x\,-\,y)^5\phantom{X}$

 



resposta:
×
Considere um meio que apresente as seguintes propriedades:
a)
o meio permite a propagação de luz, através de si, em trajetórias regulares, com visão nítida dos objetos;
b)
em qualquer posição que considerarmos uma porção do meio, as propriedades físicas são as mesmas.
c)
em cada ponto do meio a velocidade de propagação da luz varia conforme a direção em que é medida.
Classifique o meio em questão.

 



resposta: transparente, homogêneo, anisótropo
×
Determine o tamanho mínimo e a posição de um espelho plano vertical para que um observador de altura H, cujos olhos estão à altura h, possa se ver de corpo inteiro.
quadriculado para desenho de imagem no espelho

 



resposta:
Resolução:Vamos construir a imagem no espelho plano e definir a relação entre as medidas.
espelho com imagem simétrica
Passo 1. Marcar os pontos A' e B' simétricos a A e B em relação à superfície do espelho. Desenhar a imagem A'B' simétrica, que na figura (em azul) representa a imagem de AB no espelho.
A medida da distância entre a pessoa AB até o espelho (p) é igual à medida da distância da imagem A'B' ao espelho (p')
destaque ao segmento A'O
Passo 2. Para o observador enxergar a imagem do seu pé, ou seja, enxergar o ponto A, o raio de luz que atinge o seu olho no ponto O deve passar pela imagem do pé no ponto A'.
Desenhe então o raio que parte de A' e atinge O. Lembre-se que atrás do espelho é o ambiente escuro, por isso a porção do raio A'O atrás do espelho é representada como linha pontilhada.
Note na figura que o ponto de cruzamento do raio A'O com o espelho E é o ponto chamado I1. O segmento OI1 representa o raio de luz; o segmento I1A' pontilhado representa o prolongamento do raio que define a imagem da sola do pé A'.
destaque ao segmento AI1

Passo 3. O raio I1O é resultado da reflexão da luz real de um raio que partiu de A e atingiu o espelho no ponto I1.
Desenhar então o raio AI1.
destaque ao raio de luz OB'
Passo 4. Analogamente, para que o observador possa ver a imagem do topo da sua cabeça, o olho deve receber um raio que passa pelo ponto alto da imagem de sua cabeça, o ponto B'.
Desenhamos um raio de luz que atinge O e cujo prolongamento passa pela imagem do topo da cabeça B'.
Note que esse raio de luz OB' cruza com o espelho num ponto que foi chamado I2. O segmento B'I2 é representado por linha pontilhada porque está na área escura do espelho, ou seja, é apenas um prolongamento do raio de luz.
O segmento I2O é o raio de luz na área clara (real), por isso é representado por linha contínua.
destaque ao segmento OI2
Passo 5. O raio I2O é resultado da reflexão de um raio real que partiu de B e atingiu o espelho no ponto I2.
Desenhar então o raio BI2: o raio que, refletido, gerou a imagem do ponto mais alto da cabeça.
semelhança de triângulos no espelho plano
Passo 6. Do esquema ao lado, podemos concluir que o triângulo A'OB' e o triângulo I1OI2 são semelhantes pelo critério (AA∾).
O ângulo $\hat{O}$ é comum a ambos os triângulos A'OB' e I1OI2
Sendo CE paralelo a A'B'(ambos são verticais), então $\hat{I_2}$ e $\hat{B'}$ são ângulos correspondentes.
Sendo CE paralelo a A'B'(ambos são verticais), então $\hat{I_1}$ e $\hat{A'}$ são ângulos correspondentes.
tamanho mínimo de em espelho plano vertical
Passo 7. Conforme o enunciado, a altura do observador em frente ao espelho é H então $\;\overline{AB}\;=\;H\,$
Vamos chamar a dimensão vertical mínima do espelho $\;\overline{I_1I_2}\;$ de $\;d\;$.
Das propriedades da imagem em um espelho plano, sabemos que |p| = |p'| .Da semelhança dos triângulos OI1I2 e OA'B' decorre que:
$\;\dfrac{\;H\;}{\;d\;}\;=\;\dfrac{\;2|p|\;}{|p|}\;\Rightarrow\;H\,=\,2d\;\Rightarrow$
$\;\boxed{\;d\;=\;\dfrac{\;H\;}{\;2\;}\;}\;$

O tamanho mínimo de um espelho plano, na posição vertical, para que uma pessoa possa ver seu corpo inteiro, independe da distância entre a pessoa e o espelho.

posição do espelho em relação ao chão
Passo 8. Vamos chamar de D a posição do espelho em relação ao chão, então $\;\overline{CI_1}\;=\;D\,$
A distância do olho do observador até o chão, segundo o enunciado, é $\;h\;$, então $\;\overline{AO}\;=\;h\,$.
O triângulo AOA' é semelhante ao triângulo CI1A' pelo critério (AA∾)
O ângulo $\;\hat{A}\;$ e o ângulo $\;\hat{C}\;$ são ângulos retos;
O ângulo $\;\hat{A'}\;$ é um ângulo comum aos dois triângulos.
Das propriedades da imagem em um espelho plano, sabemos que |p| = |p'| .
Da semelhança dos triângulos AOA' e CI1A' decorre que:
$\;\dfrac{\;h\;}{\;D\;}\;=\;\dfrac{\;2|p|\;}{\;|p|\;}\;\Rightarrow\;h\;=\;2D\;\Rightarrow$
$\;\boxed{\;D\,=\,\dfrac{\,h\,}{\,2\,}\;}$

A posição de um espelho plano relativa ao solo para que um observador consiga ver-se de corpo inteiro independe da distância do observador ao espelho (p).


×
Sejam os conjuntos
conjuntos A = { 1; 2; 3 } e B = { 0; 2; 3; 4 } .
a) Represente num diagrama de flechas as seguintes relações binárias de A em B .
I.
$\,f\,=\,\lbrace\;(x;y)\;\in\;A\times B\;|\;x\,=\,y\,-\,2\;\rbrace\,$
II.
$\,g\,=\,\lbrace\;(x;y)\;\in\;A\times B\;|\;y\,\gt\,x\;\rbrace\,$
III.
$\,h\,=\,\lbrace\;(x;y)\;\in\;A\times B\;|\;y\,=\,x\,+\,1\;\rbrace\,$
b) Considere as relações binárias de A em B e as propriedades seguintes:
F⋅1 :
Todo x ∈ A se relaciona com algum y ∈ B .
F⋅2 :
Cada x ∈ A que se relaciona, relaciona-se com um único y ∈ B .
Assinale a opção verdadeira:
(i)
f satisfaz F⋅1
(ii)
g satisfaz F⋅1 e F⋅2
(iii)
h satisfaz F⋅1 e não satisfaz F⋅2
(iv)
h não satisfaz F⋅1
(v)
h satisfaz F⋅1 e F⋅2

 



resposta: a)
I.
relacao binária de A em B
II.
relação binária de A em B com flechas
III.
relacao binaria de A em B com flechas e diagrama de Venn
b) (v) é a correta
×
Justifique a seguinte propriedade: "Cada termo de uma P.G., a partir do segundo, é a média geométrica entre o termo anterior e o posterior".

 



resposta:
(hipótese):
Seja a P.G.$(...\,,\,a_{p-1}\,,\,a_{p}\,,\,a_{p+1}\,,\,...)$ de razão igual a $\,q\,$
(tese):
Queremos demonstrar que $\phantom{X}(ap)^2\,=\,a_{p-1}\,\centerdot\,a_{p+1}\phantom{X}$
(DEMONTRAÇÃO):
$\,\left\{\begin{array}{rcr} a_{p-1}\,=\,a_1\,q^{p-2}\;& \\ a_p\,=\,a_1\,q^{p-1}\phantom{Xx}& \\ a_{p+1}\,=\,a_1\,q^{p}\phantom{Xx}& \end{array} \right.\;\Longrightarrow$ $\;a_{p+1}\,\centerdot \,a_{p-1}\,=\,a_1\,q^{p-2}\,\centerdot \,a_1\,q^{p}\,=$ $\,(a_1)^2\,\centerdot\,q^{p-2}\,\centerdot \,q^{p}\,=$ $\,(a_1)^2\,\centerdot\,q^{2p-2}\,=$ $\,(a_1)^2\,\centerdot\,q^{2(p-1)}\,=$ $\,=\,(a_1\,q^{p-1})^2\,=$ $\,(a_p)^2$

c.q.d.


×
Veja exercÍcio sobre:
conjunto
elemento
pertinência
descrição de conjunto