Se dois segmentos são consecutivos, então eles são colineares.
b)
( )
Se dois segmentos são colineares, então eles são consecutivos.
c)
( )
Se dois segmentos são adjacentes, então eles são colineares.
d)
( )
Se dois segmentos são colineares, então eles são adjacentes.
e)
( )
Se dois segmentos são adjacentes, então eles são consecutivos.
f)
( )
Se dois segmentos são consecutivos, então eles são adjacentes.
resposta:
a)
F
b)
F
c)
V
d)
F
e)
V
f)
F
Obs. a) dois segmentos são consecutivos quando a extremidade de um coincide com a extremidade de outro — não são necessariamente colineares. Na figura a seguir, $\,\overline{AB}\,$ é consecutivo de $\,\overline{BC}\,$ e também $\,\overline{DE}\,$ é consecutivo de $\,\overline{EF}\,$ ×
Responda as afirmações de A) até E) como CERTO ou ERRADO.
A)
Se $\,\overline{AB}\,\cong\,\overline{BD}\,$ então $\,A\,=\,D\,$.
()
B)
Todo plano é convexo.
()
C)
A circunferência é convexa.
()
D)
A união de duas regiões convexas é convexa.
()
E)
A reta é convexa.
()
resposta:
A)
(ERRADO)
Resolução: Podemos ter:onde a medida $\,(\overline{AB})\,$ é igual à medida de $\,(\overline{BD})\,$ e $\,A\,$ é diferente de $\,D\,$.
B)
(CERTO)
Resolução: Seja um plano $\,\alpha\,$: Se $\,\left\{\begin{array}{rcr} A\,\in\,\alpha& \\ B\,\in\,\alpha& \\ \end{array} \right.\; \Rightarrow\;$ $\,\overline{AB} \;\subset\;\alpha\;\;\forall\;A,B\;\in\,\alpha\;\Rightarrow$ $\,\Rightarrow \;\alpha \mbox { é convexo}\,$
C)
(ERRADO)
Resolução:
$\,\left\{\begin{array}{rcr} A\,\in\,\mbox{ circunferência}& \\ B\,\in\,\mbox{ circunferência}& \\ \end{array} \right.\;$ $ \Rightarrow\; \mbox{ o segmento}\;\overline{AB} \;\not\subset\; \mbox{ na circunferência}$ $\,\Rightarrow \;$ circunferência não é convexa.
D)
(ERRADO)
Resolução:
Como no exemplo, S1 e S2 são círculos; S1 é convexo e S2 é convexo.Na figura, S1 ∪ S2 = S que não é convexa, pois ∃ A,B ∈ S | AB ⊄ S