Lista de exercícios do ensino médio para impressão
Assinale (V) ou (F) conforme as sentenças sejam verdadeiras ou falsas:

Se $\;f\;$ é uma função de $\;{\rm I\!N}\;\text{ em }\;{\rm I\!R}\;$ definida por $\;f(x)\,=\,a_x\;$,
com $\;x\in {\rm I\!N}^* \; \text{ e }\; a_x \in {\rm I\!R}\;$, então:

( )
a)
$\;f\;$ é uma sequência de números reais.
( )
b)
$\;D(f)\,=\,{\rm I\!N}^* \; \text{ e }\; CD(f)\,=\,{\rm I\!R}$
( )
c)
pode-se representar $\;f\,=\,(a_n)\,=$ $\;(a_1,\,a_2,\,a_3,\,a_4,...\,,a_n,\,...),$ $\;n\in{\rm I\!N}^*\;$.
( )
d)
$\;(a_n)\;$ é estritamente crescente se, e somente se, $\;a_n < a_{n + 1}\;\text{, }$ $\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$.
( )
e)
$\;(a_n)\;$ é estritamente decrescente se, e somente se, $\;a_n > a_{n + 1}\;\text{, }$ $\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$.
( )
f)
$\;(a_n)\;$ é constante se, e somente se, $\;a_n\,=\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
g)
$\;(a_n)\;$ é crescente se, e somente se, $\;a_n\,\leqslant\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
h)
$\;(a_n)\;$ é decrescente se, e somente se, $\;a_n\,\geqslant\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
i)
$\;(a_n)\;$ é alternante se, e somente se, $\;a_n\;$ não é monotônica.

 



resposta:
todas corretas

×
(MACKENZIE - 1974) As progressões aritméticas:   (5, 8, 11, ...)   e   (3, 7, 11, ...)   têm 100 termos cada uma. O número de termos iguais nas duas progressões é:
a)
15
b)
25
c)
1
d)
38
e)
42

 



resposta: Alternativa B
×
Quais são as progressões geométricas de elementos reais com a2 = 160 e a6 = 10 ?

 



resposta: ( a1 = 320 e q = 1/2 ) ; ( a1 = -320 e q = -1/2 )
×
Veja exercÍcio sobre:
sequências
progressões
classificação das sequências