Se $\;f\;$ é uma função de $\;{\rm I\!N}\;\text{ em }\;{\rm I\!R}\;$ definida por $\;f(x)\,=\,a_x\;$,
( )
a)
$\;f\;$ é uma sequência de números reais.
( )
b)
$\;D(f)\,=\,{\rm I\!N}^* \; \text{ e }\; CD(f)\,=\,{\rm I\!R}$
( )
c)
pode-se representar $\;f\,=\,(a_n)\,=$ $\;(a_1,\,a_2,\,a_3,\,a_4,...\,,a_n,\,...),$ $\;n\in{\rm I\!N}^*\;$.
( )
d)
$\;(a_n)\;$ é estritamente crescente se, e somente se, $\;a_n < a_{n + 1}\;\text{, }$ $\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$.
( )
e)
$\;(a_n)\;$ é estritamente decrescente se, e somente se, $\;a_n > a_{n + 1}\;\text{, }$ $\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$.
( )
f)
$\;(a_n)\;$ é constante se, e somente se, $\;a_n\,=\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
g)
$\;(a_n)\;$ é crescente se, e somente se, $\;a_n\,\leqslant\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
h)
$\;(a_n)\;$ é decrescente se, e somente se, $\;a_n\,\geqslant\,a_{n+1}\;\text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - n \,\in\, \, {\rm I\!N}^*\,$
( )
i)
$\;(a_n)\;$ é alternante se, e somente se, $\;a_n\;$ não é monotônica.
têm 100 termos cada uma. O número de termos iguais nas duas progressões é: