Lista de exercícios do ensino médio para impressão
(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?
a)
5
b)
10
c)
15
d)
18
e)
24

 



resposta:

O prisma é chamado pentagonal quando suas bases superior e inferior são pentágonos.

O prisma pentagonal não é necessariamente reto. Significa que num prisma pentagonal as arestas laterais podem ser perpendiculares aos planos das bases (prisma pentagonal reto) ou podem ser oblíquas (prisma pentagonal oblíquo).
Nem o pentágono das bases é necessariamente regular. Significa que o polígono da base tem 5 lados (pentágono), mas os lados e ângulos do polígono podem ser diferentes entre si.
As bases de um mesmo prisma são sempre congruentes.
Resolução:
diagonais num prisma pentagonal
As diagonais internas de um prisma são segmentos de reta que ligam os vértices da base inferior aos vértices da base superior, excluídas as diagonais das faces e as arestas.

Modo intuitivo:
A observação da figura ao lado é importante para desenvolver a capacidade intuitiva de cálculo com polígonos.
Da base inferior do prisma pentagonal são traçados cinco segmentos, cada um com uma extremidade no ponto V , vértice da base, e outra extremidade nos vértices da base superior, que estão numerados 1, 2, 3, 4 e 5.
1. O segmento V-1 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
2. O segmento V-2 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
3. O segmento V-3 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
4. O segmento V-4, traçado em verde, liga um vértice da base inferior a um vértice da base superior mas por ser uma aresta lateral está excluído e NÃO É UMA DIAGONAL DO PRISMA.
5. O segmento V-5 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
Concluímos das afirmações acima e da análise cuidadosa da figura, que de cada vértice de uma base partem apenas dois segmentos que são diagonais do sólido. Como a base tem 5 vértices, $\,5\,\times\,2\,=\,10\,$ e são 10 as diagonais do prisma pentagonal.
Resposta:
Alternativa B
×
(UFRS - 1981) Uma caixa tem 1 m de comprimento, 2 m de largura e 3 m de altura. Uma segunda caixa de mesmo volume tem comprimento $x$ metros maior do que o da anterior, largura $x$ metros maior do que a da anterior e altura $x$ metros menor que a da anterior. O valor de $\,x\,$ é:
a)
$\sqrt{2}$
b)
$\sqrt{3}$
c)
$\sqrt{5}$
d)
$\sqrt{6}$
e)
$\sqrt{7}$

 



resposta: alternativa E
×
(UCMG - 1981) O volume, em litros, de um cubo de 5 cm de aresta é de:
a)
0,0125
b)
0,1250
c)
1,2500
d)
12,500
e)
125,00

 



resposta: Alternativa B
×
Para um paralelepípedo reto retângulo de dimensões 3 cm , 4 cm e 5 cm , calcular:
a) A área total
b) A medida da diagonal

 



resposta:
a) Resolução:
figura paralelepípedo reto retângulo

área total = $A_t = 2(ab + bc + ac) \;\Rightarrow$
$\Rightarrow A_t = 2(5\centerdot 3 + 3\centerdot 4 + 4 \centerdot 5 )$
Resposta:
$A_t = 94\;cm^2$
b)Resolução
figura diagonal do paralelepípedo reto retângulo

diagonal do paralelepípedo = $D = \sqrt{\;a^2 + b^2 + c^2\;}$
$D = \sqrt{\;5^2 + 4^2 + 3^2\;}$
$ D = \sqrt{\;50\;}$
Resposta:
$D = 5\sqrt{2\,}\,cm$

×
Determinar o volume de um paralelepípedo reto retângulo de dimensões 3 cm, 4 cm e 5 cm.
paralelepípedo

 



resposta:
Resolução:
volume = $V = abc$
$V = 5 \centerdot 3 \centerdot 4 = 60\; cm^3$
Resposta:
O volume é $ V = 60 \;cm^3$

×
(UnB - 1982) Na figura abaixo, é dado um cubo de $\,8\sqrt{3}$ cm de aresta, cuja base está sobre um plano $\;\pi_{1}\;$. O plano $\;\pi_{2}$ é paralelo à reta que contém a aresta $\;\;a\;\;$. Forma com $\;\pi_{1}$ um ângulo de $30^o$ e "corta" do cubo um prisma $\;C\;$ de base triangular cuja base é o triângulo $\;PQR\;$.
O segmento $\;PQ\;$ tem 5 cm de comprimento.
Determinar o volume do prisma $\;C\;$.

imagem cubo e planos concorrentes

 



resposta: V = $75\;cm^3$
×
(MAUÁ) No cubo $\;(ABCDA'B'C'D')\;$ de aresta $\;\ell\;$, calcule o volume da parte piramidal $\;(AA'BD)\;$ e a altura do vértice $\;A\;$ em relação ao plano $\;A'BD\;$.
pirâmide resultado da secção do cubo

 



resposta: $\,V = \frac{\ell^3}{6}\;$ ; $\;H = \ell \frac{\sqrt{3}}{3}\,$
×
Determinar a área lateral do prisma triangular regular, cuja aresta da base mede 5 cm e a altura 10 cm .
figura do prisma triangular

 



resposta:

A área lateral de um prisma triangular é a soma das áreas de cada uma das suas três faces laterais.

Resolução:
$A_{face} = 5 \centerdot 10 = 50 \;cm^2 \;\;\;\Rightarrow$
$A_{lat} = 3 \centerdot A_f = 3 \centerdot 50 = 150\;cm^2$
Resposta:
$A_{lat} = 150\;cm^2$
×
Determinar a área total e o volume do prisma triangular regular, cuja aresta da base mede 5 cm e a altura 10 cm.

 



resposta:

A área total da um prisma é igual à soma da área de todas as faces laterais com a área da base superior e a área da base inferior.

Resolução:
figura do prisma triangular
Área total = $A_{tot} = A_{lateral} + 2 \centerdot A_{base} \;\;\Rightarrow$
$\;A_{lateral} = 3 \centerdot A_{face} = 3 \centerdot 5 \centerdot 10 = 150\; cm^2 \;\;$
$A_{base} = A_{\triangle} = \dfrac{\;b \centerdot h\;}{2} = \dfrac{\;\ell ^2 \sqrt{3}\;}{4} =$ $ \dfrac{\;5^2 \sqrt{3}\;}{4} = \dfrac{\;25\;}{4} \sqrt{3}\; cm^2$
$A_{total} = 150 + 2\dfrac{\;25\;}{4}\sqrt{3}\;\Rightarrow$
$A_{total} = \dfrac{\;25 \centerdot (12 + \sqrt{\;3\;})\;}{2} \; cm^2$

O volume de um prisma é a sua altura multiplicada pela área da base. Lembremos que, sendo um prisma, a base inferior e superior são congruentes.

Volume = $A_{base} \centerdot altura \;\;\Rightarrow \;\; V = A_{base} \centerdot H$
$\;V = \dfrac{25}{4}\sqrt{3} \centerdot 10 \;\;\Rightarrow$ $\;V = \dfrac{125 \centerdot \sqrt{3}}{2}\;cm^3$
Resposta:
$A_{total} = \dfrac{25 \centerdot (12 + \sqrt{3})}{2} \; cm^2\phantom{X}$ $V_{olume} = \dfrac{125 \centerdot \sqrt{3}}{2}\;cm^3$
×
Determinar o volume do prisma oblíquo da figura, onde a base é um hexágono regular de aresta 1 m e a aresta lateral que faz um ângulo de 60° com o plano da base mede 2 m .
cilindro oblíquo sobre plano

 



resposta: Resolução:

$\;H = \frac{2\sqrt{3}}{2}\; = \; \sqrt{3}\;m \Rightarrow $
$A_{Base} = \ell \centerdot \frac{3\sqrt{3}}{2} \;=\;3 \centerdot \frac{1 \sqrt{3}}{2} \;=\; \frac{3\sqrt{3}}{2} \;\; m^2$
$\;V\; = \; A_{Base} \centerdot H \;=\; \frac{3\sqrt{3}}{2} \centerdot \sqrt{3} \;=\; \frac{9}{2} \;=\;4,5 m^3$

$\; V\;=\;4,5\;m^3$


×
O apótema da base de um prisma triangular regular mede $\;5\;cm\;$ e a área lateral mede $\;100\;cm^2\;$. Calcular a altura do sólido.

 



resposta:
ilustração prisma triangular reto e apótema
Resolução:
1. a base é um triângulo equilátero, então:
$ \; h = \; $ altura do triângulo da base
$\;a =\; $ apótema
$\; h = 3a\;\;\;\;$ e $\;\;\;h =\frac{\ell \sqrt{3}}{2}\;$ $\;\Rightarrow \;\;3a = \frac{\ell \sqrt{3}}{2} \;\;\Rightarrow \;$ $\; 3 \centerdot 5 \; = \; \frac{\ell \sqrt{3}}{2}\;\; \Longleftrightarrow \;$ $\;\ell \; = \; \frac{30}{\sqrt{3}}\;\; \Longleftrightarrow \;$ $\; \ell \;=\;10\sqrt{3}\;cm$
2. Área lateral = $\;A_{lateral} \;=\; 3 \centerdot A_{face} \;\; \Rightarrow \;\; A_{face} \;=\; \frac{100}{3} cm^2$
Sendo $\;A_{face} \;=\; \ell \centerdot H \;$ temos que
$\; \frac{100}{3}\;=\;10 \centerdot \sqrt{3} \centerdot H \;\; \Rightarrow \;\; H \; = \frac{10}{3 \sqrt{3}}$
Resposta:
$\;H\;=\;\frac{10\sqrt{3}}{9} \; cm$
×
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².

 



resposta:
prisma triangular regular

Considerações:

Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo).

$\phantom{XX}\,\left\{\begin{array}{rcr} a_{\large b} \longrightarrow & \\ h\;\longrightarrow\; & \\ A_{\mbox{base}} \longrightarrow & \\ \end{array} \right.\,$
aresta da base
altura do prisma$\; = a_{\large b}\,$
área da base, o triângulo equilátero
Resolução:
1. Sabemos que a área lateral é igual a $\;10 m^2\;$
A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura).
$\;A_{\mbox{lateral}} \;=\; 3 \centerdot a_{\large b} \centerdot h \;\;\Longrightarrow \;\; A_{\mbox{lateral}} \;=\; 3 (a_{\large b}) ^2\;\;$ então $\;\;\left(a_{\large b}\right)^2 \;=\; \dfrac{10}{3}$
2. Área da base:
(área do triângulo equilátero de lado $\;{\large \ell}\;$ em função da medida do lado do triângulo vale $\;\dfrac{\ell^2 \sqrt{3}}{4}\;$)
Então $\;A_{\mbox{base}} \;=\;\dfrac{\left(a_{\large b}\right)^2\sqrt{3}}{4}\;\;\Longrightarrow \;\;A_{\mbox{base}}\;=\dfrac{10}{3}\centerdot\dfrac{\sqrt{3}}{4}\;m^2\;\Longrightarrow$ $\; \;\;A_{\mbox{base}}\;=\dfrac{10\sqrt{3}}{12}\;m^2$
3. Área total:
$A_{\mbox{total}} \;=\;A_{\mbox{lateral}}\,+\,2\centerdot A_{\mbox{base}} \;\;\Longrightarrow \;\;A_{\mbox{total}}\;=\; 10\,+\,2 \centerdot \dfrac{10\sqrt{3}}{12}$
$\;\boxed{\;A_{total}\; = \;10(1 + \dfrac{\sqrt{3}}{6})\;m^2\;}\;$

×
Num prisma quadrangular regular, a área lateral mede 32 m² e o volume 24 cm³ . Calcular as suas dimensões.

 



resposta:

Um prisma é chamado quadrangular quando suas bases são quadrados.

Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETO e suas bases são POLÍGONOS REGULARES.

RETO → as arestas laterais são todas perpendiculares aos planos das bases

REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.

A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases.
A área total de um prisma é a soma da área lateral às áreas das bases.
O volume de um prisma é a área da base multiplicada pela altura do prisma.

prisma quadrangular regular indicados lados, bases e arestas
paralelepípedo prisma quadrangular de lado da base a e altura h
Resolução:
Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
Dividindo (II) por (I) temos:
$\;\dfrac{a^{\large 2}h}{ah}\,=\,\dfrac{24}{8}\;\Rightarrow\;\boxed{\,a\,=\,3\,m\,}\;$
Substituindo $\;a\,=\,3\;$ em (I):
$\;3\centerdot h\,=\,8\;\Rightarrow\;\boxed{\,h\,=\,\dfrac{8}{3}\,m\,}\;$
Resposta:As dimensões do prisma são
aresta da base igual a 3 m e altura igual a 8/3 m
×
(ITA - 1990) Considere um prisma triangular regular cuja aresta da base mede x cm. Sua altura é igual ao menor lado de um triangulo ABC inscritível num círculo de raio x cm. Sabendo-se que o triangulo ABC é semelhante ao triangulo de lados 3 cm , 4 cm e 5 cm, o volume do prisma em cm³ é:
a)
$\,\dfrac{\sqrt{2}}{3}x^{\large 3}\,$
b)
$\,2\dfrac{\sqrt{2}}{5}x^{\large 3}\,$
c)
$\,3\dfrac{\sqrt{3}}{10}x^{\large 3}\,$
d)
$\,\dfrac{\sqrt{3}}{10}x^{\large 3}\,$
e)
  n.d.a

 



resposta: (C)
×
Demonstrar que, num paralelepípedo reto retângulo, o quadrado da soma das medidas das arestas é igual à soma do quadrado da diagonal com a área total.

 



resposta: demonstração.
Nesse caso o paralelepípedo é chamado RETO RETÂNGULO:
RETO significa: as arestas laterais são perpendiculares aos planos das bases.

As faces laterais de todo prisma reto são sempre retângulos

.
RETÂNGULO significa: suas bases são retângulos. Poderia ser chamado retangular.

Observação importante: Se você ainda não viu como calcular a diagonal de um paralelepípedo retangular reto veja este exercício sobre diagonal do prisma retangular reto.

prisma reto retangular
Resolução:

Queremos provar que a soma das medidas das arestas elevada ao quadrato é igual ao quadrado da diagonal somado à área total.

diagonal do prisma reto retânguo D
Hipótese:
$\,\left\{\begin{array}{rcr} \mbox{prisma reto retangular} & \\ \mbox{dimensões }\,a,\, b \mbox{ e }c\phantom{XX}\; &\\ \mbox{diagonal }\,D\phantom{XXXXX}\;\, & \\ \mbox{área total }\,A_{\large t}\phantom{XXXXX} & \end{array} \right.\,$
Tese:
$\,\lbrace(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\;$
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I)
2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II)
3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III)
então substituindo em (I) as assertivas (II) e (III) temos que:
$\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $

c.q.d.


×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
Num prisma reto, cada base é um retângulo que tem um lado o dobro do outro, a altura do prisma mede 15 cm e a área total 424 cm² .
Calcular as dimensões da base.

 



resposta:
O enunciado descreve um paralelepípedo reto retângulo com dimensões de (veja figura):
arestas da base x e 2x e
aresta lateral 15 cm .
Resolução:
paralelepípedo reto retângulo

Área Total:ATotal = 2(Abase) + Alateral = 424

Área Total$\;A_T\,=\,2(x\centerdot 2x\,+\,x\centerdot 15\,+\,2x\centerdot \,15)\,=\,424\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,15x\,+\,30x\,=\,212\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,45x\,-\,212\,=\,0\;\Rightarrow\;$
$\,\left\{\begin{array}{rcr} x_1\,=\,4\;\phantom{XXXX}\;& \\ x_2\,\mbox{ raiz negativa }& \end{array} \right.\,$
Resposta:Como as bases medem x e 2x, então as arestas da base são iguais a
4 cm e 8 cm.
×
Calcular a área total de um paralelepípedo cujas faces são losangos congruentes de lados iguais a "a" . Sabe-se que uma diagonal da face também mede "a".

 



resposta:
Considerações:

Romboedro é o prisma oblíquo que tem todas as faces congruentes e em forma de losango.

O Romboedro não é um prisma regular porque não é reto — suas arestas "laterais" são oblíquas em relação aos "planos das bases".
O enunciado desse exercício descreve um romboedro de aresta "a".
romboedro de lado a
Resolução:
$\,A_{\large f}\,\longrightarrow\,\mbox{Área de uma face}\,$
$\,A_{\large t}\,\longrightarrow\,\mbox{Área total}\,$
$A_{\large f}\,=\,2\centerdot \dfrac{a^{\large 2}\sqrt3}{4}\,\Longrightarrow\;$ $\,A_{\large f}\,=\,\dfrac{a^{\large 2}\sqrt3}{2}\,$
$\,A_{\large t}\,=\,6\centerdot A_{\large f}\,=\,6\centerdot \dfrac{a^{\large 2}\sqrt3}{2}\,\Longrightarrow$
$\,\boxed{\,A_{\large t}\,=\,3a^{\large 2}\sqrt3\,}$
A área total do paralelepípedo é
$\,3a^{\large 2}\sqrt3\,$ unidades de medida de área.
×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N .
a) Achar a distância AB.
b) Achar a distância MN.
dois cubos sobrepostos de centros M e N e arestas 1 cm e 2 cm

 



resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações:
Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
vista lateral do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{AB})^{\large 2}\,=\,(1)^{\large 2}\,+\,(3)^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{AB}\,=\,\sqrt{10} \mbox{ cm}\;}$
Considerações:
Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
secção diagonal do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
Consideremos o triângulo NPM reto em P.
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{MN})^{\large 2}\,=\,(\dfrac{\sqrt{2}}{2})^{\large 2}\,+\,(\dfrac{3}{2})^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2} \mbox{ cm}\;}$

×
O volume de um paralelepípedo retângulo é igual a 96 cm³ .Duas de suas dimensões medem 3 cm e 4 cm .Calcular a terceira dimensão.

 



resposta: 8 cm
×
O comprimento da base de um paralelepípedo retângulo é 3 cm maior que a largura. Sendo 22 cm o perímetro da base e 280 cm³ o seu volume, calcular a altura.

 



resposta: 10 cm
×
A soma das arestas de um paralelepípedo reto retângulo é 48 m . Calcular o seu volume, sabendo-se que as dimensões são números inteiros consecutivos.

 



resposta: 60 m³
×
Determine o volume do prisma quadrangular regular inscrito no cilindro equilátero da figura em função do raio da base do mesmo.
prisma quadrangular inscrito em um cilindro equilátero

 



resposta:
Resolução:
base do cilindro equilátero que contém um prisma quadrangular inscrito
1. calcular a aresta da base do prisma interno:

$\;\overline{AB}\;\rightarrow\;$ lado do quadrado inscrito

$\;\overline{AC}\;\rightarrow\;$ diagonal do quadrado e diâmetro $\;2R\;$

$\;AB\sqrt{2}\,=\,2R\;\Rightarrow\;$ $\;AB\,=\,\dfrac{2R}{\sqrt{2}}\centerdot\dfrac{\sqrt{2}}{\sqrt{2}}\;\Rightarrow\;$ $\;\overline{AB}\,=\,R\sqrt{2}\;$
2. calcular a altura do prisma interno:
Dizer que o cilindro é equilátero significa que sua secção meridiana é um quadrado. Portanto a altura do cilindro é igual ao diâmetro da base (2R).A altura do prisma é a mesma do cilindro (2R).
3. calcular o volume do prisma:
Volume = (Área da Base)×(altura)
$\;V\,=\,\left( R\sqrt{2}\right)^{\large 2}\centerdot 2R\;\Rightarrow\;$
$\;V\,=\,2R^{\large 2}\centerdot 2R\;=\;4R^{\large 3}\;$
Resposta: O volume do prisma em função do raio será
V = 4R³
×
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro

 



resposta:
secção meridiana do cilindro

Considerações:

Eixo do cilindro é a reta que passa pelos centros das bases do cilindro.
Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro.
Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases.
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.

A secção meridiana de um cilindro equilátero é um quadrado.

prisma triangular regular com cilindro equilátero inscrito

Resolução:

1. Observando atentamente a figura, temos:
$\;A_{\mbox{base}}\;$
=
área da base do prisma triangular
$\;V_C\;$
=
o volume do cilindro
$\;\rightarrow\;V_C\;=\;\pi\centerdot R^{\large 2}\;=\;\pi\centerdot(3)^{\large 2}$
$\;V_P\;$
=
o volume do prisma triangular
$\;\rightarrow\;V_P\;=\,A_{\mbox{base}}\centerdot h\;=\;A_{\mbox{base}}\centerdot 6\;$
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$.
$\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.

A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita

Perímetro da base
=
$\;p\;=\,(a\,-\,s)\,+\,a\,+\,(a\,+\,s)\;=\;3\centerdot a$
Semiperímetro da base
=
$\;\dfrac{p}{2}\;=\;\dfrac{3\centerdot a}{2}$
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais:
Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Alternativa A
×
(FUVEST) Uma colher de plástico transparente, cheia de água, pode funcionar como:
a)
lente convergente;
b)
lente divergente;
c)
espelho côncavo;
d)
microscópio composto;
e)
prisma.

 



resposta: (A)
×
Um feixe de luz monocromática e de raios paralelos entre si, penetra numa região cúbica, de aresta L, representada em corte na figura abaixo.
Os raios emergem desta região segundo as direções indicadas.
raios incidentes e emergentes de uma região cúbica
Essa região cúbica deve conter, dentre as seguintes:
a)
Uma lente convergente de distância focal menor que L.
b)
Uma lente divergente de distância focal menor que L.
c)
Uma lente convergente de distância focal maior que L.
d)
Uma lente divergente de distância focal maior que L.
e)
Uma associação de prismas.

 



resposta: (A)
×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Um prisma triangular regular tem as arestas da base medindo 5 cm e aresta lateral igual a 7 cm . Calcular a área da base, a área lateral, a área total e o volume.

 



resposta: $\phantom{X}A_{base}\,=\,\frac{25\sqrt{\,3\,}}{4}\;$ cm² $\phantom{X}A_{lateral}\,=\,105\;$ cm² $\phantom{X}A_{t}\,=\,\frac{5(42+5\sqrt{\,2\,}}{2}\;$ cm²$\phantom{X}V\,=\,\frac{175\sqrt{\,3\,}}{2}\;$ cm³
×
Calcular o volume de um paralelepípedo reto retângulo, sabendo-se que suas dimensões são proporcionais a 9, 12 e 20 e que a diagonal mede 100 m.

 



resposta: V = 138240 m³
×
Calcular o volume, a área total e a diagonal de um paralelepípedo reto retângulo, cujas dimensões são 3 m , 4 m e 12 m.

 



resposta: V = 144 m³ Atotal = 192m² D = 13 m
×
A área total de um paralelepípedo retângulo é 720 m², a diagonal de uma face mede 20 m e a soma das suas dimensões é 34 m. Calcular as dimensões.

 



resposta: 16m12m6m
×
Calcular o volume de um prisma reto, cuja base é um triângulo de lados medindo 4m, 6m e 8m respectivamente, e sabendo-se que a área lateral é 90m².

 



resposta: $\;V\,=\,15\sqrt{15}\,m^3\;$
×
(FUVEST) Na figura abaixo:
a)
ABCD e EFGH são trapézios de lados 2, 8, 5 e 5 .
b)
Os trapézios estão em planos paralelos, cuja distância é 3.
c)
As retas AE, BF, CG e DH são paralelas.
Calcule o volume do sólido.
prisma quadrangular reto com bases trapezoidais 

 



resposta: V = 60
×
(FUVEST) Uma caixa d'água tem forma cúbica com 1 metro de aresta. De quanto baixa o nível da água ao retirarmos 1 litro de água da caixa?

 



resposta: 0,001 m
×
Veja exercÍcio sobre:
geometria de posição
geometria espacial
prisma