Lista de exercícios do ensino médio para impressão
Calcular a distância do ponto $\;P(-6,8)\;$ à origem do sistema cartesiano.

 



resposta:
×
Calcular a distância entre os pontos $\,A(a\,-\,3;\;b\,+\,4)\;$ e $\;B(a\,+\,2,\;b\,-\,8)$.

 



resposta:
×
Calcular o perímetro do triângulo ABC, sendo dados $A(2,1)$, $B(-1,3)$, e $C(4,-2)$.

 



resposta:
×
Provar que o triângulo cujos vértices são $A(2,2)$, $B(-4,-6)$, e $C(4,-12)$ é um triângulo retângulo.

 



resposta: Basta verificar que as medidas dos lados estão de acordo com o Teorema de Pitágoras.
×
Determinar $x$ de modo que o triângulo ABC seja retângulo em B. São dados : $A(4,5)$, $B(1,1)$ e $C(x,4)$.

 



resposta:
×
(MACKENZIE - 1973) A representação gráfica do conjunto de pontos $\;(x\,,\,y)\;$ tais que $\;x\,-\,2\,-\,\sqrt{4\,-\,y^2}\,\geqslant\,0\;$ é:
a)
gráfico cartesiano sol nascente
b)
gráfico cartesiano meia circunferência
c)
gráfico cartesiano um quarto de circunferência
d)
gráfico cartesiano circunferência de raio 4
e)
quarto de circunferência no plano cartesiano

 



resposta: (B)
×
Localizar e rotular no plano cartesiano os pontos A (0 , -3) , B (3 , -4) , C (5 , 6) , D (-2 , -5) e E (-3 , 5) .
plano cartesiano quadriculado

 



resposta: resposta plano cartesiano com pontos
×
(EPUSP - 1967) O ponto $P(3,m)$ é interno a um dos lados do triângulo $A(1,2)$, $B(3,1)$ e $C(5,-4)$. Então:
a)
m = -1
b)
m = 0
c)
m = $\dfrac{1}{2}$
d)
m = 1
e)  nenhuma das respostas anteriores


 



resposta: Alternativa A
×
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
a)
$k = {\dfrac{11}{3}}$
b)
$k = {\dfrac{15}{4}}$
c)
$k = 2$
d)
$k ={\dfrac{1}{2}}$
e)
nenhuma das respostas anteriores
circunferência no plano cartesiano

 



resposta: alternativa B
×
(V. UNIF. RS - 1980) Na figura, $\phantom{X}\stackrel \frown{AB} \phantom{X}$ é um arco de uma circunferência de raio 1 . A área do trapézio retângulo $\phantom{X}BCDE\phantom{X}$ é:
plano cartesiano com quadrado e arco
a)
$\dfrac{\sqrt{3}}{24}$
b)
$\dfrac{\sqrt{3}}{18}$
c)
$\dfrac{\sqrt{3}}{12}$
d)
$\dfrac{\sqrt{3}}{6}$
e)
$\dfrac{\sqrt{3}}{4}$

 



resposta: (A)
×
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.

 



resposta:
Resolução:
circunferência no plano cartesiano
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$.
$\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3.
$\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$.
O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
$\;\dfrac{|3a\,-\,2\sqrt{2}\,+\,5\,+\,2\sqrt{2}\,-\,3a|}{\sqrt{a^2\,+\,1}}\,=\,3 \;\Rightarrow$ $\; \dfrac{5}{a^2\,+\,1}\,=\,3 \;\Rightarrow $ $\; a\;=\;\dfrac{4}{3}$ ou $\;a = -\, \dfrac{4}{3}$.
As equações das tangentes são:
$\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$

×
Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.

 



resposta:
Resolução:
Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).
plano cartesiano mostrando ponto Pe xis ípsilon
Resposta:
$\,A(2\,;\,3)\;\;\;\Rightarrow \; \left\{\begin{array}{rcr} A_x\;(2\,;\,0) \phantom{X}& \\ A_y\;(0\,;\,3)\phantom{X}& \\ \end{array} \right.$
$\,B(3\,;\,-1)\;\;\Rightarrow \; \left\{\begin{array}{rcr} B_x\;(3\,;\,0) \phantom{XX}& \\ B_y\;(0\,;\,-1)\phantom{X}& \\ \end{array} \right.$
$\,C(-5\,;\,1)\;\Rightarrow \; \left\{\begin{array}{rcr} C_x\;(-5\,;\,0) \phantom{X}& \\ C_y\;(0\,;\,1)\phantom{XX}& \\ \end{array} \right.$
$\,D(-3\,;\,-2)\;\Rightarrow \; \left\{\begin{array}{rcr} D_x\;(-3\,;\,0) \phantom{X}& \\ D_y\;(0\,;\,-2)\phantom{X}& \\ \end{array} \right.$
$\,E(-5\,;\,-1)\;\Rightarrow \; \left\{\begin{array}{rcr} E_x\;(-5\,;\,0) \phantom{X}& \\ E_y\;(0\,;\,-1)\phantom{X}& \\ \end{array} \right.$

×
(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
a)
plano cartesiano com função quadrática item A
b)
plano cartesiano com função quadrática item B
c)
plano cartesiano com função quadrática item C
d)
plano cartesiano com função quadrática item D
e)
plano cartesiano com função quadrática item E

 



resposta: (A)
×
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.

 



resposta:
Resolução:
Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:
plano cartesiano indicando simétrico de P em relação ao eixo das ordenadas
Observando a figura acima, podemos concluir:

$\,\boxed{\;P(x\, , \,y)\;\Rightarrow \;P_1(-x\, , \,y) \,}$

Resposta:
$\,A(-1\,,\,2)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,A_1(1\,,\,2)\,$
$\,B(3\,,\,-1)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,B_1(-3\,,\,-1)\,$
$\,C(-2\,,\,-2)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,C_1(2\,,\,-2)\,$
$\,D(-2\,,\,5)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,D_1(2\,,\,5)\,$
$\,E(3\,,\,-5)\,$
$\phantom{X}\Rightarrow\,\phantom{X}$
$\,E_1(-3\,,\,-5)\,$

×
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$


 



resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades:
1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE
2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades:
1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE
2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
d)
se $\,x\,+\,y \, = \, 0\; \Rightarrow \; $ $\;x\,=\,-y \;\Rightarrow\; \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,2º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,4º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$

×
Representar no sistema de eixos cartesianos ortogonais os pontos: A (3 ; 4), B (-1 ; 2), C (-3 ; -4), D (4 ; -2), E (3 ; 0), F (0 ; -3) e G (0 ; 0).

 



resposta:
representação de pontos no sistema cartesiano

×
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
a)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{1}{2}} \right) \,$
b)
$\,\left({\large \frac{1}{2}; \frac{\sqrt{3}}{2}} \right) \,$
c)
$\,\left({\large \frac{1}{2}; \frac{1}{2}} \right) \,$
d)
$\,\left({\large \frac{\sqrt{3}}{2}; \frac{\sqrt{3}}{2}} \right) \,$
e)
nenhuma das alternativas
anteriores


 



resposta: alternativa B
×
Para um sistema de coordenadas ortogonais, estão certas as seguintes afirmações:
( 1 )
Pontos com abscissa nula estão no eixo 0x
( 2 )
A distância do ponto (-3 ; 5) ao eixo Oy é 3.
( 3 )
A distância entre os pontos A (-2 ; 4) e B (8 ; 4) vale 10.
( 4 )
A distância entre os pontos A (1 ; 5) e B (-3 ; 2) vale 5.
( 5 )
Os pontos da bissetriz dos quadrantes pares têm abscissa e ordenada iguais.


 



resposta:
Estão corretas 2, 3 e 4

×
Dadas as coordenadas dos pontos:
A (4 ; 3)
D (2 ; -3)
G (-6 ; -4)
B (5 ; 0)
E (-4 ; 2)
C (0 ; 4)
F (0 ; 0)
Achar as distâncias entre os pontos em cada um dos seguintes pares:
A e B
B e E
C e G
A e C
B e F
D e E
A e D
C e D
E e F

 



resposta:
$\;\overline{AB}\,=\,\sqrt{10}\;$
$\;\overline{BE}\,=\,\sqrt{85}\;$
$\;\overline{CG}\,=\,10\;$
$\;\overline{AC}\,=\,\sqrt{17}\;$
$\;\overline{BF}\,=\,5\;$
$\;\overline{DE}\,=\,\sqrt{61}\;$
$\;\overline{AD}\,=\,2\sqrt{10}\;$
$\;\overline{CD}\,=\,\sqrt{53}\;$
$\;\overline{EF}\,=\,2\sqrt{5}\;$

×
(MACKENZIE) Considere a figura abaixo. O comprimento do segmento $\phantom{X}\overline{MN} \phantom{X}$ é:
a)
$\,\sqrt{2\;}\,-\,{\dfrac{\;1\;}{2}}\,$
b)
$\,\sqrt{2\;}\,+\,{\dfrac{\;1\;}{\sqrt{2\;}}}\,$
c)
$\,\sqrt{2\;}\,+\,1\phantom{\dfrac{X}{X}}\,$
d)
$\,1\,-\,{\dfrac{\;\sqrt{\;2\;}\;}{2}}\,$
e)
$\,\sqrt{2\;}\,-\,1\,$
plano cartesiano com circunferência similar ao ciclo trigonométrico

 



resposta: (E)
×
(USP) Uma das diagonais de um quadrado tem extremidades A ( 1 ; 1 ) e C ( 3 ; 3 ) . As coordenadas dos outros dois vértices são:
a)
( 2 ; 3 ) e ( 3 ; 2 )
b)
( 3 ; 1 ) e ( 1 ; 3 )
c)
( 3 ; 0 ) e ( 1 ; 4 )
d)
( 5 ; 2 ) e ( 4 ; 1 )
e)
nenhuma das anteriores


 



resposta: alternativa B
×
Seja P ( x ; y ) o ponto simétrico do ponto A ( 1 ; 1 ) em relação à reta que passa pelos pontos B ( 4 ; 1 ) e C ( 1 ; 4 ) . Então x + y é igual a:
a)
4
b)
8
c)
6
d)
10
e)
12


 



resposta: alternativa B
×
(CESCEM) Determinar o ponto D no paralelogramo abaixo:
a)
( 1 ; -1 )
b)
( 2 ; -2 )
c)
( 2 ; -4 )
d)
( 3 ; -2 )
e)
( 3 ; -4 )
paralelogramo no plano cartesiano

 



resposta: (E)
×
(FGV) Sabendo que o $\phantom{X} \triangle ABC\phantom{X}$ é um triângulo retângulo em $\,B\,$, calcular as coordenadas do vértice $\,C\,$.
a)
$\,(\,5\,;\,-2\,)\,$
b)
$\,(\,3{\large \frac{1}{2}}\,;\,-2\,)$
c)
$\,(\,4\,;\,-2\,)\,$
d)
$\,(\,4{\large \frac{1}{2}}\,;\,-2\,)$
e)
nenhuma das anteriores
triângulo ABC reto em B no plano cartesiano

 



resposta: (C)
×
(MACKENZIE) Na figura, a equação da reta $\;r\;$ é:
plano ortogonal com retas perpendiculares
a)
2x - 3y - 1 = 0
b)
x - y - 1 = 0
c)
4x - 5y - 3 = 0
d)
4x - 3y - 5 = 0
e)
3x - 2y - 4 = 0

 



resposta: (B)
×
(ABC) A reta ao lado tem por equação:
a)
x - 2y - 2 = 0
b)
x + 2y - 2 = 0
c)
y = 2x + 1
d)
x = 27 + 1
e)
nenhuma das
anteriores
reta no plano cartesiano

 



resposta: (A)
×
(SANTA CASA) O gráfico que melhor representa a relação $\phantom{X}|y|\,=\,x\,+\,1\,,\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - x\,,\,y \,\in\, \, \mathbb{R} \phantom{X}$ é:
a)
plano cartesiano da alternativa A
b)
plano cartesiano da alternativa B
c)
plano cartesiano da alternativa C
d)
plano cartesiano da alternativa D
e)
plano cartesiano da alternativa E

 



resposta: (C)
×
(MACKENZIE) Observe a figura. Pertence à reta r o ponto:
a)
$\,(\,0\,;\,2\,-\,3\sqrt{3}\,)\,$
b)
$\,(\,2\,-\,\sqrt{3}\,;\,0\,)\,$
c)
$\,(\,0\,;\,\sqrt{3}\,-\,6\,)\,$
d)
$\,(\,3\,-\,\sqrt{3}\,;\,0\,)\,$
e)
$\,(\,0\,;\,3\,-\,2\sqrt{3})\,$
reta no plano cartesiano ângulo 60 graus passa pelo ponto 3, 2

 



resposta: (A)
×
Determine a equação da circunferência cujo centro coincide com a origem do sistema cartesiano e cujo raio mede 3 unidades.

 



resposta:
circunferência de raio 3 e centro 0-0 no plano cartesiano
Resolução:
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$\,(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\;$.
Como $\;C\,(0\,,\,0)\;$ e $\;R\,=\,3\;$, temos:
$\,(x\,-\,0)^2\,+\,(y\,-\,0)^2\,=\,3^2\;\Rightarrow$ $\; \;x^2\,+\,y^2\,-\,9\,=\,0\;$

$\phantom{X}\boxed{\;x^2\,+\,y^2\,-\,9\,=\,0\;} \phantom{X}$


×
Determinar a equação da circunferência que passa pela origem do sistema cartesiano e cujo centro é o ponto de coordenadas (4 , -3) .

 



resposta:
circunferência no plano cartesiano

Resolução:


O raio da circunferência é a distância do centro até a origem:
$R\,=\,d_{CO}\,=$ $\,{\large\,\sqrt{(x_C\,-\,x_O)^2\,+\,(y_C\,-\,y_O)^2}}$
$R\,=\,{\large\,\sqrt{(4\,-\,0)^2\,+\,(-3\,-\,0)^2}}\;\Rightarrow\;$
$R\,=\,\sqrt{16\,+\,9}\;\Rightarrow\;R\,=\,5$
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\,$
Sabemos que o centro é $\;C\,(4\,,\,-3)\;$ e raio $\,R\,=\,5\,$. Temos então:
$(x\,-\,4)^2\,+\,[y\,-\,(-3)]^2\,=\,(5)^2\;\Rightarrow$ $\;(x\,-\,4)^2\,+\,(y\,+\,3)^2\,=\,5^2\;\Rightarrow$

$\;\boxed{\;x^2\,+\,y^2\,-\,8x\,+\,6y\,=\,0\;}$


×
Determinar a equação da circunferência que passa pelo ponto A (-1 , 6) e tangencia o eixo dos "y" no ponto B (0 , 3) .

 



resposta:
Resolução:
Sendo o centro da circunferência
o ponto C (x , 3) conforme a figura:
circunferência tangente ao ponto zero três no plano cartesiano
Sendo $\;\overline{CA}\;$ e $\;\overline{CB}\;$ raios da mesma circunferência,
são segmentos de medidas iguais:
$ \overline{CA}\,=\overline{CB}\,$
$\;\sqrt{ (x\,+\,1)^{\large 2}\,+\,(3\,-\,6)^{\large 2}} \,= $ $\,\sqrt{ (x\,-\,0)^{\large 2}\,+\,(3\,-\,3)^{\large 2} } $
Elevando ao quadrado, simplificando, temos:
$(x\,+\,1)^{\large 2}\,+\,9\,=\,x^{\large 2}\;\Rightarrow\;$ $x\,=\,-5\,$
Então o centro é $\,C\,(-5\,,\,3)\,$ e o raio é $\,\overline{BC}\,=\,5$
e a equação da circunferência:
$\,(x\,+\,5)^2\,+\,(y\,-\,3)^2\,=\,5^2\;\Rightarrow\;$ $\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\;}\,$
×
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.

 



resposta:
Considerações:

A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.

Veja aqui
triângulo ABC circunscrito na circunferência

Resolução:

Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
$\phantom{X}\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OB}\,=\,R \;& \\ \end{array} \right\}\;\Rightarrow\;$ $\;d_{OA}\,=\,d_{OB}\;\Rightarrow \,\sideset{}{_{OA}^2}d\;=\sideset{}{_{OB}^2}d\;\Rightarrow$
1.
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\,$ ${\small (x\,-\,9)^2\,+\,[y\,-\,(-10)]^2\;}\Rightarrow $
${\small x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=$ ${\small \,x^2\,-\,18x\,+\,81\,+\,y^2\,+\,20y\,+\,100\;}\Rightarrow $
${\small 6x\,-\,12y\,+\,18x\,-\,20y}\,=$ $\,{\small 81\,+\,100\,-\,9\,-\,36}\;\Rightarrow $
${\small 24x\,-\,32y\,=\,136}\;\Rightarrow \;$ $\boxed{\;3x\,-\,4y\,=\,17\;}\;\text{(I)}$
2.
$\left.\begin{array}{rcr} d_{OA}\,=\,R \;& \\ d_{OC}\,=\,R \;& \\ \end{array} \right\}\;$ $\;\Rightarrow\;d_{OA}\,=\,d_{OC}\;\Rightarrow \;\sideset{}{_{OA}^2}d\;=\sideset{}{_{OC}^2}d\;\Rightarrow$
${\small [x\,-\,(-3)]^2\,+\,(y\,-\,6)^2}\,=\;$ $\,{\small [x\,-\,(-5)]^2\,+\,(y\,-\,4)^2}\;\Rightarrow $
${\small \, x^2\,+\,6x\,+\,9\,+\,y^2\,-\,12y\,+\,36}\,=\,$ ${\small \,x^2\,+\,10x\,+\,25\,+\,y^2\,-\,8y\,+\,16}\;\Rightarrow $
${\small \,6x\,-\,12y\,-\,10x\,+\,8y}\,=\,$ ${\small \,25\,+\,16\,-\,9\,-\,36}\;\Rightarrow $
${\small \,-4x\,-\,4y\,=\,-4}\;\Rightarrow\;$ $\; \boxed{\;x\,+\,y\,=\,1\;}\;\text{(II)} $
3.
O próximo passo é resolver o sistema de duas equações (I) e (II):
$\;\left\{\begin{array}{rcr} 3x\,-\,4y\,=\,17 & \\ x\,+\,y\,=\,1\phantom{X} \;& \\ \end{array} \right.\;\Rightarrow\;$ $\;\left\{\begin{array}{rcr} x\,=\,3\;\; & \\ y\,=\,-2& \\ \end{array} \right.\;\Rightarrow\;$ $\; 0\,(3\,,\,-2)\,$
Sabemos então que o centro tem coordenadas (3 , -2) , então vamos calcular a medida do raio:
$\,R\,=\,d_{OA}\,=\,$ $\,\sqrt{[3\,-\,(-3)]^2\,+\,(-2\,-\,6)^2}\;\Rightarrow\;$ $\;R\,=\,10$
Resposta:
$\;\boxed{0\,(3\,,\,-2)\;\text{e}\;R\,=\,10}\,$

×
(ITA - 1990) Considere a região do plano cartesiano x0y definida pelas desigualdades $\,x\,-\,y\,\leqslant\,1\;\mbox{, }\; x\,+\,y\,\geqslant\,1\;$ e $\;(x\,-\,1)^2\,+\,y^2\,\leqslant\,2\,$. O volume do sólido gerado pela rotação desta região em torno do eixo $\,x\,$ é igual a:
a)
$\,\dfrac{4}{3}\pi\,$
b)
$\,\dfrac{8}{3}\pi\,$
c)
$\,\dfrac{4}{3}(2\,-\,\sqrt{2})\pi\,$
d)
$\,\dfrac{8}{3}(\sqrt{2}\,-\,1)\pi\,$
e)
n.d.a.

 



resposta: (B)
×
(FUVEST - 2015) A equação $\phantom{X}x^2\,+\,2x\,+\,y^2\,+\,my\,=\,n\phantom{X}$, em que $\,m\,$ e $\,n\,$ são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta $\phantom{X}y\,=\,-x\,+\,1\phantom{X}$ contém o centro da circunferência e a intersecta no ponto $\,(-3,\,4)\,$. Os valores de $\,m\,$ e $\,n\,$ são, respectivamente

a)
-4 e 3
b)
4 e 5
c)
-4 e 2
d)
-2 e 4
e)
2 e 3

 



resposta: alternativa A
×
(MAPOFEI - 1970) Pelo ponto $\,P\,$ de coordenadas cartesianas ortogonais $\,(\operatorname{cos}\beta\,$; $\,\operatorname{sen}\alpha)\phantom{X}$, com $\,(0\,\leqslant\,\alpha\,<\,\beta\,\leqslant\,\dfrac{\pi}{2})\,$ passam duas retas $\,r\,$ e $\,s\,$ paralelas aos eixos coordenados (ver figura)
a)
Determinar as coordenadas das intersecções de $\,r\,$ e $\,s\,$ com a circunferência $\,x^2\,+\,y^2\,=\,1\,$.
b)
Determinar a equação da reta $\,\overleftrightarrow{PM}\,$, onde $\,M\,$ é o ponto médio do segmento $\,\overline{AB}\,$.
c)
Demonstrar analiticamente que as retas $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ são perpendiculares.
plano cartesiano com retas r e s

 



resposta: a) $\,A(cos\alpha\,;\,sen\alpha)\,$, $\,B(cos\beta\,;\,sen\beta)\,$
$\,C(-cos\alpha\,;\,sen\alpha)\,$, $\,D(cos\beta\,;\,-sen\beta)\,$
b) $\,cos\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,x\,-\,sen\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,y\,-\,cos\dfrac{\beta\,-\,\alpha}{2}\,\centerdot\,cos(\beta\,+\,\alpha)\,=\,0\,$
c) basta provar que o produto dos coeficientes angulares de $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ é igual a -1.

×
(FUVEST - 1977) Determine a intersecção das curvas de $\,{\rm\,I\!R}\,×\,{\rm\,I\!R}\,$ dadas por $\,x^3\,-\,x^2\,=\,0\phantom{X}$ e $\phantom{X}y^3\,-\,y^2\,=\,0\,$

 



resposta: $\,A\,\cap\,B\,=\,\lbrace\,(0;0),\,(0;1),\,(1;0),\,(1;1)\,\rbrace\,$

×
(MAPOFEI - 1973) O ponto P = (2; 4) é o centro de um feixe de retas no plano cartesiano. Pede-se determinar as equações das retas desse feixe, perpendiculares entre si, que interceptam o eixo 0x nos pontos A e B , e tais que a distância entre eles seja 10 .

 



resposta: (r) 2x - y = 0 e (s) x + 27 - 10 = 0
(r) x - 2y + 6 = 0 e (s) 2x + y - 8 = 0

×
Baseado no gráfico das funções f , g e h , definidas no conjunto dos números reais, determine os valores de $\,x\;\in\;{\rm I\!R}\,$ tais que:
a)
$\,f(x)\,\lt\,g(x)\,\leqslant\,h(x)\,$
b)
$\,g(x)\,\leqslant\,f(x)\,\lt\,h(x)\,$
c)
$\,h(x)\,\leqslant\,f(x)\,\lt\,g(x)\,$
funções f, g e h no plano cartesiano

 



resposta: a) $\,\mathbb{S}\;=\;\lbrace x\,\in\,{\rm I\!R}\;|\;1\,\lt\,x\,\leqslant\,4 \rbrace\,$ b) $\,\mathbb{S}\;=\;\lbrace x\,\in\,{\rm I\!R}\;|\;-3\,\lt\,x\,\leqslant\,1 \rbrace\,$ c)$\,\mathbb{S}\,=\,\varnothing\,$
×
Represente num diagrama cartesiano o gráfico das funções de $\,{\rm I\!R}\,$ em $\,{\rm I\!R}\,$ tais que:
a) f(x) = x
plano cartesiano x0y
b) f(x) = |x|
plano cartesiano x0y

 



resposta:
×
Represente num diagrama cartesiano o gráfico das funções de $\,{\rm I\!R}\,$ em $\,{\rm I\!R}\,$ tais que:
a) f(x) = x - 2
plano cartesiano x0y
b) f(x) = |x - 2|
plano cartesiano x0y

 



resposta:
×
Represente num diagrama cartesiano o gráfico das funções de $\,{\rm I\!R}\,$ em $\,{\rm I\!R}\,$ tais que:
a) f(x) = |x| - 2
plano cartesiano x0y
b) $\,f(x)\,=\,\left|\;{\small |x|\,-\,2}\;\right|\,$
plano cartesiano x0y

 



resposta:
×
Considere uma função $\;f\,:\, {\rm I\!R} \rightarrow {\rm I\!R} \;$ tal que $\phantom{X}f(x)\,=\,\dfrac{\;|x|\,-\,x\;}{|x|}\phantom{X}$.
Esboce o seu gráfico.
plano cartesiano xOy

 



resposta:
modular function chart

×
Representar no plano cartesiano os pontos A(4; 3) , B(-2; 5) , C(-4; -2) , D(3; -4) , E(2; 0) , F(0; -3) , G$(\frac{3}{2};\;\frac{5}{2})\;$ e H($-\frac{1}{2}$; -4).
plano cartesiano x0y

 



resposta:
plano cartesiano x0y com pontos marcados

×
Responder em qual quadrante do plano cartesiano estão localizados os pontos.
a)
$\,(\sqrt{2}\,;\;-\sqrt{3})\,$
b)
$\,(-\frac{1}{2}\,;\;\frac{\sqrt{2}}{2})\,$
c)
$\,(2\,-\,\sqrt{2}\,;\;1\,-\,\sqrt{2})\,$

 



resposta: a)4º b)2º c)4º
×
Entre os pontos A(0; 7), B(3; 3), C(-2; 0), D(-1; 1), E(${\small \sqrt{\,3\;}}$; 0), F(-4; 4), G(0; ${\small -\sqrt{\,2\;}}$), H($\frac{\,1\,}{2}$; $-\frac{\,1\,}{2}$) e I(0; 0):
a)
quais estão no eixo Ox?
b)
quais estão no eixo Oy?
c)
quais estão na bissetriz dos quadrantes ímpares?
d)
quais estão na bissetriz dos quadrantes pares?

 



resposta: a)CEI b)AGI c)BDI d)FHI
×
Veja exercÍcio sobre:
geometria analítica
plano cartesiano
distância entre dois pontos