a) se existir um(a) e um(a) só b) se existirem exatamente dois (duas) distintos(as) c) se existir um número finito porém maior que 2 d) se existirem infinitos(as) e) se não existir nenhum(a) de modo que as afirmações que se seguem fiquem corretas:
1º reta perpendicular a duas retas reversas. 2º plano paralelo a duas retas reversas. 3º dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra. 4º retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p . Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
(MACKENZIE - 1979) O triângulo $\,MNP\,$ retângulo em $\,N\,$ e o paralelogramo $\,NPQR\,$ situam-se em planos distintos. Então, a afirmação "MN e QR são segmentos ortogonais":
a)
é sempre verdadeira.
b)
não pode ser analisada por falta de dados.
c)
é verdadeira somente se $\overline{MN} = \overline{QR}$.
d)
nunca é verdadeira.
e)
é verdadeira somente se $\overline{MN} = 2\overline{QR}$.
(PUC-SP - 1981) Dois planos $\,\beta\;$ e $\;\gamma\,$ se cortam na reta $\,r\,$ e são perpendiculares a um plano $\alpha$. Então:
a) $\beta$ e $\gamma$ são perpendiculares. b) $r$ é perpendicular a $\alpha$. c) $r$ é paralela a $\alpha$. d) todo plano perpendicular a $\alpha$ encontra $r$. e) existe uma reta paralela a $\alpha$ e a $r$.
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
(UFBA - 1981) Sendo $\alpha$ e $\beta$ dois planos e $r_{1}$ e $r_{2}$ duas retas, tais que $\alpha \; // \; \beta$, $r_1 \; \perp \; \alpha$ e $r_2 \; // \; \beta$, então $r_1$ e $r_2$ podem ser:
(STA CASA - 1982) Na figura ao lado, tem-se o triângulo $\;ABC\;$ tal que $\;\overline{AB}\;$ está contido num plano $\;\alpha\;$, $\;C \notin \alpha\;$ e os ângulos de vértices $\;B\;$ e $\;C\;$ medem, respectivamente, 70° e 60°. Se $\;r\;$ // $\;\alpha\;$, $\;r \cap \overline{AC} = [M]\;$, $\;r \cap \overline{BC} = [N]\;$, $\;s\;$ contém a bissetriz do ângulo $\;\widehat{CAB}\;$ e $\;r \cap s = [X]\;$, então a medida do ângulo $\;\widehat{AXN}$, assinalado é:
(PUC-SP - 1982) Um triângulo isósceles $ABC$, com $AB = BC = 30$ e $AC = 24$, tem o lado $AC$ contido em um plano $\alpha$ e o vértice $B$ a uma distância 18 de $\alpha$. A projeção ortogonal do triângulo $ABC$ sobre o plano $\alpha$ é um triângulo: a) retângulo. b) obtusângulo. c) equilátero. d) isósceles, mas não equilátero. e) semelhante ao triângulo $ABC$.
(PUC-SP - 1981) Quantas diagonais possui um prisma pentagonal?
a)
5
b)
10
c)
15
d)
18
e)
24
resposta:
O prisma é chamado pentagonal quando suas bases superior e inferior são pentágonos.
O prisma pentagonal não é necessariamente reto. Significa que num prisma pentagonal as arestas laterais podem ser perpendiculares aos planos das bases (prisma pentagonal reto) ou podem ser oblíquas (prisma pentagonal oblíquo). Nem o pentágono das bases é necessariamente regular. Significa que o polígono da base tem 5 lados (pentágono), mas os lados e ângulos do polígono podem ser diferentes entre si. As bases de um mesmo prisma são sempre congruentes. Resolução:
As diagonais internas de um prisma são segmentos de reta que ligam os vértices da base inferior aos vértices da base superior, excluídas as diagonais das faces e as arestas.
Modo intuitivo: A observação da figura ao lado é importante para desenvolver a capacidade intuitiva de cálculo com polígonos.
Da base inferior do prisma pentagonal são traçados cinco segmentos, cada um com uma extremidade no ponto V , vértice da base, e outra extremidade nos vértices da base superior, que estão numerados 1, 2, 3, 4 e 5.
1. O segmento V-1 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
2. O segmento V-2 traçado em vermelho, é uma diagonal do prisma pois liga um vértice da base inferior a um vértice da base superior.
3. O segmento V-3 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
4. O segmento V-4, traçado em verde, liga um vértice da base inferior a um vértice da base superior mas por ser uma aresta lateral está excluído e NÃO É UMA DIAGONAL DO PRISMA.
5. O segmento V-5 liga um vértice da base inferior a um vértice da base superior mas por ser uma diagonal da face está excluído e NÃO É UMA DIAGONAL DO PRISMA.
Concluímos das afirmações acima e da análise cuidadosa da figura, que de cada vértice de uma base partem apenas dois segmentos que são diagonais do sólido. Como a base tem 5 vértices, $\,5\,\times\,2\,=\,10\,$ e são 10 as diagonais do prisma pentagonal.
(UFPR - 1980) Calculando a distância de um ponto do espaço ao plano de um triângulo equilátero de 6 unidades de comprimento de lado, sabendo que o ponto equidista 4 unidades dos vértices do triângulo, obtém-se:
(V. UNIF. RS - 1980) Na figura, $\phantom{X}\stackrel \frown{AB} \phantom{X}$ é um arco de uma circunferência de raio 1 . A área do trapézio retângulo $\phantom{X}BCDE\phantom{X}$ é:
(ITA - 2004) Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.
resposta:
Resolução:
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$. $\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3. $\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$. O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
As equações das tangentes são: $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$
(FASP) O único período onde ocorre uma oração subordinada substantiva é:
a) É provável que ele não case outra vez. b) Meu pai dizia que os amigos são para as ocasiões. c) Os elogios de maior crédito são os que os inimigos nos tributam. d) Desconfiamos em tempo que armavam um plano contra nós. e) O fato é que eles não estudam.
(UnB - 1982) Na figura abaixo, é dado um cubo de $\,8\sqrt{3}$ cm de aresta, cuja base está sobre um plano $\;\pi_{1}\;$. O plano $\;\pi_{2}$ é paralelo à reta que contém a aresta $\;\;a\;\;$. Forma com $\;\pi_{1}$ um ângulo de $30^o$ e "corta" do cubo um prisma $\;C\;$ de base triangular cuja base é o triângulo $\;PQR\;$. O segmento $\;PQ\;$ tem 5 cm de comprimento. Determinar o volume do prisma $\;C\;$.
(MAUÁ) No cubo $\;(ABCDA'B'C'D')\;$ de aresta $\;\ell\;$, calcule o volume da parte piramidal $\;(AA'BD)\;$ e a altura do vértice $\;A\;$ em relação ao plano $\;A'BD\;$.
Determinar o volume do prisma oblíquo da figura, onde a base é um hexágono regular de aresta 1 m e a aresta lateral que faz um ângulo de 60° com o plano da base mede 2 m .
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².
resposta:
Considerações:
Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo).
aresta da base altura do prisma$\; = a_{\large b}\,$ área da base, o triângulo equilátero
Resolução: 1. Sabemos que a área lateral é igual a $\;10 m^2\;$ A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura).
2. Área da base: (área do triângulo equilátero de lado $\;{\large \ell}\;$ em função da medida do lado do triângulo vale $\;\dfrac{\ell^2 \sqrt{3}}{4}\;$)
Então $\;A_{\mbox{base}} \;=\;\dfrac{\left(a_{\large b}\right)^2\sqrt{3}}{4}\;\;\Longrightarrow \;\;A_{\mbox{base}}\;=\dfrac{10}{3}\centerdot\dfrac{\sqrt{3}}{4}\;m^2\;\Longrightarrow$ $\; \;\;A_{\mbox{base}}\;=\dfrac{10\sqrt{3}}{12}\;m^2$
(PUC-RS) Em "Meu pai, se vivesse, é possível que alterasse os planos e, como tinha vocação da política, é possível que me encaminhasse somente à política, embora os dois ofícios não fossem nem sejam inconciliáveis".
No texto, a oração "nem sejam inconciliáveis" é classificada como:
a) adverbial condicional b) adverbial explicativa c) adverbial restritiva d) adverbial concessiva e) adverbial causal
(ENERJ) Entre duas torres de 13 m e 37 m de altura existe na base uma distância de 70 m. Qual a distância entre os extremos sabendo-se que o terreno é plano?
(ITA - 2012) As retas $\;r_1\;$ e $\;r_2\;$ são concorrentes no ponto $\;P\;$, exterior a um círculo $\;\omega\;$. A reta $\;r_1\;$ tangencia $\;\omega\;$ no ponto $\;A\;$ e a reta $\;r_2\;$ intercepta $\;\omega\;$ nos ponto $\;B\;$ e $\;C\;$ diametralmente opostos. A medida do arco $\;\stackrel \frown{AC}\;$ é $\;60^o\;$ e $\;\overline{PA}\;$ mede $\;\sqrt{2}\;$ cm. Determine a área do setor menor de $\;\omega\;$ definido pelo arco $\stackrel \frown{AB}\;$.
resposta:
Resolução: De acordo com a figura traçada a partir do enunciado:
1.
o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente).
Então $\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$. $tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$ $ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$
2.
o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$.
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$
Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.
resposta:
Resolução: Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).Resposta:
(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.
resposta:
Resolução: Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:Observando a figura acima, podemos concluir:
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$
resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE 2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE 2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 ⇒ x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
(SANTA CASA) O gráfico que melhor representa a relação $\phantom{X}|y|\,=\,x\,+\,1\,,\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - x\,,\,y \,\in\, \, \mathbb{R} \phantom{X}$ é:
Determine a equação da circunferência cujo centro coincide com a origem do sistema cartesiano e cujo raio mede 3 unidades.
resposta:
Resolução: A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é: $\,(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\;$. Como $\;C\,(0\,,\,0)\;$ e $\;R\,=\,3\;$, temos: $\,(x\,-\,0)^2\,+\,(y\,-\,0)^2\,=\,3^2\;\Rightarrow$ $\; \;x^2\,+\,y^2\,-\,9\,=\,0\;$
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.
resposta:
Considerações:
A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.
Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
(ITA - 1990) Considere a região do plano cartesiano x0y definida pelas desigualdades $\,x\,-\,y\,\leqslant\,1\;\mbox{, }\; x\,+\,y\,\geqslant\,1\;$ e $\;(x\,-\,1)^2\,+\,y^2\,\leqslant\,2\,$. O volume do sólido gerado pela rotação desta região em torno do eixo $\,x\,$ é igual a:
(UNESP) Em um plano horizontal encontram-se representadas uma circunferência e as cordas $\,AC\,$ e $\,BD\,$. Nas condições apresentadas na figura, determine o valor de $\,x\,$.
(FUVEST - 2015) A equação $\phantom{X}x^2\,+\,2x\,+\,y^2\,+\,my\,=\,n\phantom{X}$, em que $\,m\,$ e $\,n\,$ são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta $\phantom{X}y\,=\,-x\,+\,1\phantom{X}$ contém o centro da circunferência e a intersecta no ponto $\,(-3,\,4)\,$. Os valores de $\,m\,$ e $\,n\,$ são, respectivamente
Num prisma quadrangular regular, a área lateral mede 32 m² eo volume 24 cm³ . Calcular as suas dimensões.
resposta:
Um prisma é chamado quadrangular quando suas bases são quadrados.
Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETOe suas bases são POLÍGONOS REGULARES.
RETO → as arestas laterais são todas perpendiculares aos planos das bases
REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.
A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases. A área total de um prisma é a soma da área lateral às áreas das bases. O volume de um prisma é a área da base multiplicada pela altura do prisma.
Resolução: Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
aresta da base igual a 3 m e altura igual a 8/3 m ×
(ITA - 1982) Considere a família de curvas do plano complexo, definida por $\,Re\left(\dfrac{1}{z}\right)\,=\,C\,$ onde $\,z\,$ é um complexo não nulo e $\,C\,$ é uma constante real positiva. Para $\,C\,$ temos uma
a)
circunferência com centro no eixo real e raio igual a $\,C\,$.
b)
circunferência com centro no eixo real e raio igual a $\,\dfrac{1}{C}\,$.
c)
circunferência tangente ao eixo real e raio igual a $\,\dfrac{1}{(2C)}\,$.
d)
circunferência tangente ao eixo imaginário e raio igual a $\,\dfrac{1}{(2C)}\,$.
e)
circunferência com centro na origem do plano complexo e raio igual a $\,\dfrac{1}{C}\,$.
(MAPOFEI - 1970) Pelo ponto $\,P\,$ de coordenadas cartesianas ortogonais $\,(\operatorname{cos}\beta\,$; $\,\operatorname{sen}\alpha)\phantom{X}$, com $\,(0\,\leqslant\,\alpha\,<\,\beta\,\leqslant\,\dfrac{\pi}{2})\,$ passam duas retas $\,r\,$ e $\,s\,$ paralelas aos eixos coordenados (ver figura)
a)
Determinar as coordenadas das intersecções de $\,r\,$ e $\,s\,$ com a circunferência $\,x^2\,+\,y^2\,=\,1\,$.
b)
Determinar a equação da reta $\,\overleftrightarrow{PM}\,$, onde $\,M\,$ é o ponto médio do segmento $\,\overline{AB}\,$.
c)
Demonstrar analiticamente que as retas $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ são perpendiculares.
resposta: a) $\,A(cos\alpha\,;\,sen\alpha)\,$, $\,B(cos\beta\,;\,sen\beta)\,$ $\,C(-cos\alpha\,;\,sen\alpha)\,$, $\,D(cos\beta\,;\,-sen\beta)\,$ b) $\,cos\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,x\,-\,sen\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,y\,-\,cos\dfrac{\beta\,-\,\alpha}{2}\,\centerdot\,cos(\beta\,+\,\alpha)\,=\,0\,$ c) basta provar que o produto dos coeficientes angulares de $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ é igual a -1.
(FUVEST - 1977) Determine a intersecção das curvas de $\,{\rm\,I\!R}\,×\,{\rm\,I\!R}\,$ dadas por $\,x^3\,-\,x^2\,=\,0\phantom{X}$ e $\phantom{X}y^3\,-\,y^2\,=\,0\,$
(FUVEST - 1977) Um corpo A de massa igual a 5 kg é abandonado no ponto O e escorrega por uma rampa. No plano horizontal, choca-se com outro corpo B de massa igual a 5 kg que estava parado. Os dois ficam grudados e continuam o movimento na mesma direção até atingir uma outra rampa na qual o conjunto pode subir. Considere o esquema da figura e despreze o atrito.
Que altura atingirá o conjunto dos dois corpos na rampa?
(MAPOFEI - 1973) O ponto P = (2; 4) é o centro de um feixe de retas no plano cartesiano. Pede-se determinar as equações das retas desse feixe, perpendiculares entre si, que interceptam o eixo 0x nos pontos A e B , e tais que a distância entre eles seja 10 .
resposta: (r) 2x - y = 0 e (s) x + 27 - 10 = 0 (r) x - 2y + 6 = 0 e (s) 2x + y - 8 = 0 ×
Responda as afirmações de A) até E) como CERTO ou ERRADO.
A)
Se $\,\overline{AB}\,\cong\,\overline{BD}\,$ então $\,A\,=\,D\,$.
()
B)
Todo plano é convexo.
()
C)
A circunferência é convexa.
()
D)
A união de duas regiões convexas é convexa.
()
E)
A reta é convexa.
()
resposta:
A)
(ERRADO)
Resolução: Podemos ter:onde a medida $\,(\overline{AB})\,$ é igual à medida de $\,(\overline{BD})\,$ e $\,A\,$ é diferente de $\,D\,$.
B)
(CERTO)
Resolução: Seja um plano $\,\alpha\,$: Se $\,\left\{\begin{array}{rcr} A\,\in\,\alpha& \\ B\,\in\,\alpha& \\ \end{array} \right.\; \Rightarrow\;$ $\,\overline{AB} \;\subset\;\alpha\;\;\forall\;A,B\;\in\,\alpha\;\Rightarrow$ $\,\Rightarrow \;\alpha \mbox { é convexo}\,$
C)
(ERRADO)
Resolução:
$\,\left\{\begin{array}{rcr} A\,\in\,\mbox{ circunferência}& \\ B\,\in\,\mbox{ circunferência}& \\ \end{array} \right.\;$ $ \Rightarrow\; \mbox{ o segmento}\;\overline{AB} \;\not\subset\; \mbox{ na circunferência}$ $\,\Rightarrow \;$ circunferência não é convexa.
D)
(ERRADO)
Resolução:
Como no exemplo, S1 e S2 são círculos; S1 é convexo e S2 é convexo.Na figura, S1 ∪ S2 = S que não é convexa, pois ∃ A,B ∈ S | AB ⊄ S
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I) 2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II) 3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III) então substituindo em (I) as assertivas (II) e (III) temos que: $\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $
Calcular a área total de um paralelepípedo cujas faces são losangos congruentes de lados iguais a "a" . Sabe-se que uma diagonal da face também mede "a".
resposta:
Considerações:
Romboedro é o prisma oblíquo que tem todas as faces congruentes e em forma de losango.
O Romboedro não é um prisma regular porque não é reto — suas arestas "laterais" são oblíquas em relação aos "planos das bases". O enunciado desse exercício descreve um romboedro de aresta "a".
Resolução:
$\,A_{\large f}\,\longrightarrow\,\mbox{Área de uma face}\,$ $\,A_{\large t}\,\longrightarrow\,\mbox{Área total}\,$
Sabendo que um cone circular reto tem altura 24 cm e raio da base 8 cm , determine a que distância do vértice ele deve ser interceptado por um plano paralelo ao plano da base de forma que que a área da secção obtida seja $\;25 \pi\;$cm² .
(PUC) A medida dos lados de um triângulo equilátero $\;ABC\;$ é $\;a\;$ . O triângulo $\;ABC\;$ gira em torno de uma reta $\;r\;$ do plano do triângulo, paralela ao lado $\;\overline{BC}\;$ e passando pelo vértice $\;A\;$. O volume do sólido gerado por esse triângulo vale:
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N . a) Achar a distância AB. b) Achar a distância MN.
resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações: Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
Considerações: Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
Resolução:
Consideremos o triângulo NPM reto em P. $\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro
resposta:
Considerações:
Eixo do cilindro é a reta que passa pelos centros das bases do cilindro. Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro. Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases. O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.
A secção meridiana de um cilindro equilátero é um quadrado.
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$. $\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.
A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais: Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
(MAUÁ) Um cilindro circular reto, de raio R e altura h = 2R , é cortado por um plano paralelo ao seu eixo. Sendo R/2 a distância do eixo ao plano secante, calcule o volume do menor segmento cilíndrico resultante desta secção.
(FUVEST) Num colégio com 100 alunos, 65% dos quais são do sexo masculino, todos os estudantes foram convidados a opinar sobre o novo plano econômico do governo. Apurados os resultados, verificou-se que 40% dos homens e 50% das mulheres manifestaram-se favoravelmente ao plano. A porcentagem de estudantes favorável ao plano vale:
No sistema em equilíbrio o bloco C está na iminência de movimento. Sejam mC = 20 kg , mB = 10 kg , g = 10 m/s² e os fios e polias ideais.Determine:
a)
o peso do bloco A;
b)
a força de atrito sobre o bloco C;
c)
o coeficiente de atrito estático entre o bloco e o plano.
resposta: a) mA = 20 kgb) Fatrito = $10\sqrt{3}$ Nc) $\;\mu\,=\, \dfrac{\;\sqrt{\,3\;}\;}{2}$ ×
(EPUSP) Uma esfera de peso G = 18 N , repousando sobre um plano horizontal liso, está presa pelo centro a dois fios AB e AC que passam sem atrito sobre polias B e C , suportando nas suas extremidades as cargas F = 10 N e Q = 20 N respectivamente.
Supondo-se o fio AB horizontal, determinar a inclinação do fio AC com a horizontal quando a esfera estiver na posição de equilíbrio, assim como a reação da esfera no plano em que repousa.
O sistema ao lado está em equilíbrio. Os pesos dos corpos A e B são, respectivamente, mA = 10 N e mB = 40 N . Sabe-se que o corpo B está na iminência de escorregar. Determine o coeficiente de atrito μ entre o corpo B e o plano horizontal.
Uma partícula é lançada obliquamente, em uma região onde a aceleração da gravidade vale (g) e o efeito do ar é desprezível. A velocidade de lançamento do módulo Vo e o ângulo formado com o plano horizontal é θ . Pedem-se:
a)
o tempo de subida e o tempo total, até o retorno ao plano horizontal de lançamento.
b)
a altura máxima atingida.
c)
o alcance horizontal.
d)
o ângulo de tiro que proporciona o máximo alcance horizontal.
resposta: a) $\,T_{\text subida}\,=\,\dfrac{\;V_o\,sen\theta\;}{g}\,$ e $\,T_{\text total}\,=\,\dfrac{\;2V_o\,sen\theta\;}{g}\,$b)$H\,=\dfrac{\;\sideset{}{_o^2}V sen^2\theta\;}{2g}\,$c)$S_{\text horizontal}\,=\dfrac{\;\sideset{}{_o^2}V sen\,2\theta\;}{g}\,$d)$\;\theta\,=\,45^o$ ×
Baseado no gráfico das funções f , g e h , definidas no conjunto dos números reais, determine os valores de $\,x\;\in\;{\rm I\!R}\,$ tais que:
Considere uma função $\;f\,:\, {\rm I\!R} \rightarrow {\rm I\!R} \;$ tal que $\phantom{X}f(x)\,=\,\dfrac{\;|x|\,-\,x\;}{|x|}\phantom{X}$. Esboce o seu gráfico.