Em um "horário especial" um diretor de televisão dispõe de 7 intervalos para anúncios comerciais. Se existirem 7 diferentes tipos de anúncios, de quantas formas o diretor poderá colocar os 7 nos intervalos destinados a eles?
Uma peça para ser fabricada deve passar por 7 máquinas, sendo que a operação de cada máquina independe das outras. De quantas formas as máquinas podem ser dispostas para montar a peça?
resposta: Resolução: a) Cada anagrama é uma permutação das letras T, E, O, R, I, A. O número procurado é $\,P_{\large 6}\,=\,6!\,=\,720\,$ b) T _ _ _ _ _ Nesse caso temos somente que permutar as letras E, O, R, I, A. O número procurado é $\,P_{\large 5}\,=\,5!\,=\,120\,$ c) T _ _ _ _ A Nesse caso temos somente que permutar as letras E, O, R, I. O número procurado é $\,P_{\large 4}\,=\,4!\,=\,24\,$ d) Temos as possibilidades:
A _ _ _ _ _
$\,5!\,=\,120\,$ anagramas
E _ _ _ _ _
$\,5!\,=\,120\,$ anagramas
I _ _ _ _ _
$\,5!\,=\,120\,$ anagramas
O _ _ _ _ _
$\,5!\,=\,120\,$ anagramas
Logo, ao todo teremos 120 + 120 + 120 + 120 = 480 anagramas e) Se as vogais A, E, I, O devem estar juntas, então elas funcionam como "uma letra" que deve ser permutada com T e R. Logo o número de permutações é: $\,P_{\large 3}\,=\,3!\,=\,6\,$. Mas em cada uma dessas permutações as vogais podem permutar-se (entre elas mesmas) de $\,P_{\large 4}\,=\,4!\,=\,24\,$ formas. Então o número de anagramas nas condições é: $\,6\,\centerdot\,24\,=\,144\,$
Dez pessoas, entre elas Amador e Bruna, devem ficar em fila. De quantas formas isto pode ser feito se Amador e Bruna devem ficar sempre juntos?
resposta:
Resolução: Se Amador e Bruna devem ficar juntos é porque eles funcionam como uma única pessoa, que junto com as outras 8 devem ser permutadas, dando um total de 9! permutações. Entretanto, em cada uma dessas permtuações, Amador e Bruna podem ser permutados entre si(AB ou BA) de 2! = 2 formas.
O total de permutações em que eles aparecem juntos (AB ou BA) é : $\,2\,\centerdot\,9!\,$
Temos uma estante de 15 livros, dos quais 4 são de Matemática. De quantas formas podemos colocá-los em ordem na estante, de modo que os livros de Matemática fiquem sempre juntos?
Se colocarmos em ordem estritamente crescente todos os números de cinco algarismos distintos, obtidos com 1, 3, 4, 6 e 7, a posição do número 61 473 é:
(MAUÁ LINS) De quantos modos podemos ordenar 2 livros de Matemática (distintos), 3 de Português (distintos) e 4 de Física (distintos) de modo que os livros de uma mesma matéria fiquem sempre juntos e, além disso os de Física fiquem, entre si, sempre numa certa ordem?
resposta:
Resolução:
1.
podemos permutar os livros de matémática de $P_2$ maneiras.
2.
podemos permutar os livros de português de $P_3$ maneiras.
3.
os livros de física têm sempre a mesma ordem, são organizados de 1 maneira.
4.
os 3 grupos de livros, uma vez agrupados por matéria, podem ser permutados (os grupos) de $P_3$ maneiras.
5.
portanto, podemos ordenar de $\phantom{X}P_2\,\centerdot\,P_3\,\centerdot\,1\,\centerdot\,P_3\;=$ $2!\,\centerdot\,3!\,\centerdot\,1\,\centerdot\,3!\;=\;72\phantom{X}$ maneiras
Quantos números naturais, de três algarismos distintos, podem ser formados, no total, com os algarismos 0, 1 , 2 , 3 , 4 , 6 e 8 ?
b)
Quantos números naturais, de três algarismos distintos e em ordem crescente, podem ser formados, no total, com os algarismos 0, 1 , 2 , 3 , 4 , 6 e 8 ?
c)
Quantos números naturais, de três algarismos distintos e em ordem decrescente, podem ser formados, no total, com os algarismos 0, 1 , 2 , 3 , 4 , 6 e 8 ?