a) se existir um(a) e um(a) só b) se existirem exatamente dois (duas) distintos(as) c) se existir um número finito porém maior que 2 d) se existirem infinitos(as) e) se não existir nenhum(a) de modo que as afirmações que se seguem fiquem corretas:
1º reta perpendicular a duas retas reversas. 2º plano paralelo a duas retas reversas. 3º dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra. 4º retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p . Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
(MACKENZIE - 1979) O triângulo $\,MNP\,$ retângulo em $\,N\,$ e o paralelogramo $\,NPQR\,$ situam-se em planos distintos. Então, a afirmação "MN e QR são segmentos ortogonais":
a)
é sempre verdadeira.
b)
não pode ser analisada por falta de dados.
c)
é verdadeira somente se $\overline{MN} = \overline{QR}$.
d)
nunca é verdadeira.
e)
é verdadeira somente se $\overline{MN} = 2\overline{QR}$.
(FUVEST - 1980) São dados cinco pontos não coplanares $A$, $B$, $C$, $D$, $E$ . Sabe-se que $ABCD$ é um retângulo, $AE \perp AB$ e $AE \perp AD$ . Pode concluir que são perpendiculares as retas:
a) $EA$ e $EB$ b) $EC$ e $CA$ c) $EB$ e $BA$ d) $EA$ e $AC$ e) $AC$ e $BE$
(PUC-SP - 1981) Dois planos $\,\beta\;$ e $\;\gamma\,$ se cortam na reta $\,r\,$ e são perpendiculares a um plano $\alpha$. Então:
a) $\beta$ e $\gamma$ são perpendiculares. b) $r$ é perpendicular a $\alpha$. c) $r$ é paralela a $\alpha$. d) todo plano perpendicular a $\alpha$ encontra $r$. e) existe uma reta paralela a $\alpha$ e a $r$.
(UFBA - 1981) Sendo $\alpha$ e $\beta$ dois planos e $r_{1}$ e $r_{2}$ duas retas, tais que $\alpha \; // \; \beta$, $r_1 \; \perp \; \alpha$ e $r_2 \; // \; \beta$, então $r_1$ e $r_2$ podem ser:
(STA CASA - 1982) Na figura ao lado, tem-se o triângulo $\;ABC\;$ tal que $\;\overline{AB}\;$ está contido num plano $\;\alpha\;$, $\;C \notin \alpha\;$ e os ângulos de vértices $\;B\;$ e $\;C\;$ medem, respectivamente, 70° e 60°. Se $\;r\;$ // $\;\alpha\;$, $\;r \cap \overline{AC} = [M]\;$, $\;r \cap \overline{BC} = [N]\;$, $\;s\;$ contém a bissetriz do ângulo $\;\widehat{CAB}\;$ e $\;r \cap s = [X]\;$, então a medida do ângulo $\;\widehat{AXN}$, assinalado é:
(PUC-SP - 1982) Um triângulo isósceles $ABC$, com $AB = BC = 30$ e $AC = 24$, tem o lado $AC$ contido em um plano $\alpha$ e o vértice $B$ a uma distância 18 de $\alpha$. A projeção ortogonal do triângulo $ABC$ sobre o plano $\alpha$ é um triângulo: a) retângulo. b) obtusângulo. c) equilátero. d) isósceles, mas não equilátero. e) semelhante ao triângulo $ABC$.
(CESGRANRIO - 1989) Na figura, as retas $\,{\large r}\,$ e $\,{\large r'}\,$ são paralelas, e a reta $\,{\large s}\,$ é perpendicular a $\,{\large t}\,$. Se o menor ângulo entre $\,{\large r}\,$ e $\,{\large s}\,$ mede 72°, então o ângulo $\alpha$ da figura mede:
(CESGRANRIO - 1990) Duas retas paralelas são cortadas por uma transversal, de modo que a soma de dois dos ângulos formados vale 72°. Então, qualquer dos ângulos obtusos formados mede:
(CESGRANRIO - 1991) As retas $\;r\;$ e $\;s\;$ da figura são paralelas cortadas pela transversal $\;t\;$. Se o ângulo $\;B\;$ é o triplo de $\;A\;$, então $\;B\; - \;A\;$ vale:
(UFMG - 1992) Os pontos $\;A, B, C, D\;$ são colineares e tais que $\;AB = 6$ cm, $\;BC = 2$ cm, $\;AC = 8$ cm e $\;BD = 1$ cm. Nessas condições, uma possível disposição desses pontos é:
As retas r e s dos casos representados nas figuras são paralelas entre si. Determine x e y.
a)
b)
resposta: a) x = 120° e y = 75° b) x = 20° e y = 50° ×
No triângulo $\,ABC\,$ da figura, $\,\overline{AS}\,$ é bissetriz interna relativa do vértice $\,A\,$. Prove que $\;\dfrac{AB}{AC}\,=\,\dfrac{BS}{CS}\;$ (sugestão: Teorema de Tales)
resposta: demonstração.
1. No triângulo $\,ABC\,$, construimos $\, \overleftrightarrow{MC}\,//\, \overleftrightarrow{AS}\,\longrightarrow\;$ pelo teorema fundamental do paralelismo temos $\,\hat{M}\,=\,B\hat{A}S\,=\,\alpha\,$ (ângulos correspondentes) $\,\hat{C}\,=\,C\hat{A}S\,=\,\alpha\,$ (alternos internos) Se $\,\hat{M}\,=\,\hat{C}\,=\,\alpha\,\therefore\,\,\triangle ACM\,$ é isósceles com $\,\boxed{\,\overline{AC}\,\cong\,\overline{AM}\,}$ 2. Pelo Teorema de Tales: $\phantom{X}\dfrac{AB}{AM}\,=\,\dfrac{BS}{CS}\phantom{X}$, mas $\,\overline{AC}\,\cong\,\overline{AM}\,$ então: $\phantom{X}\dfrac{AB}{AC}\,=\,\dfrac{BS}{CS}\phantom{X}$