Lista de exercícios do ensino médio para impressão
Para um paralelepípedo reto retângulo de dimensões 3 cm , 4 cm e 5 cm , calcular:
a) A área total
b) A medida da diagonal

 



resposta:
a) Resolução:
figura paralelepípedo reto retângulo

área total = $A_t = 2(ab + bc + ac) \;\Rightarrow$
$\Rightarrow A_t = 2(5\centerdot 3 + 3\centerdot 4 + 4 \centerdot 5 )$
Resposta:
$A_t = 94\;cm^2$
b)Resolução
figura diagonal do paralelepípedo reto retângulo

diagonal do paralelepípedo = $D = \sqrt{\;a^2 + b^2 + c^2\;}$
$D = \sqrt{\;5^2 + 4^2 + 3^2\;}$
$ D = \sqrt{\;50\;}$
Resposta:
$D = 5\sqrt{2\,}\,cm$

×
Determinar o volume de um paralelepípedo reto retângulo de dimensões 3 cm, 4 cm e 5 cm.
paralelepípedo

 



resposta:
Resolução:
volume = $V = abc$
$V = 5 \centerdot 3 \centerdot 4 = 60\; cm^3$
Resposta:
O volume é $ V = 60 \;cm^3$

×
Determinar a diagonal de um cubo de aresta 10 cm.

 



resposta: $D = 10 \sqrt{3}$ cm.
×
Determinar a área total da superfície de um cubo de aresta 10 cm.

 



resposta: $A_{total} = 600\;cm^2$
×
Determinar o volume de um cubo de aresta 10 cm.

 



resposta: $V = a^3 = 1000\;cm^3$
×
(FUVEST - 2015) O sólido da figura é formado pela pirâmide $\,SABCD\,$ sobre o paralelepípedo reto $\,ABCDEFGH\,$. Sabe-se que $\,S\,$ pertence à reta determinada por $\,A\,$ e $\,E\,$ e que $\,AE\,=\,2cm\,$, $\,AD\,=\,4cm\,$ e $\,AB\,=\,5cm\,$. A medida do segmento $\,\overline{SA}\,$ que faz com que o volume do sólido seja igual a $\,\dfrac{4}{3}\,$ do volume da pirâmide $\,SEFGH\,$ é
a)
2 cm
b)
4 cm
c)
6 cm
d)
8 cm
e)
10 cm
pirâmide sobre paralelepípedo

 



resposta: Alternativa E
×
Num prisma quadrangular regular, a área lateral mede 32 m² e o volume 24 cm³ . Calcular as suas dimensões.

 



resposta:

Um prisma é chamado quadrangular quando suas bases são quadrados.

Da mesma forma o prisma cujas bases são triângulos é chamado triangular, se (as bases) forem retângulos (o prisma) é chamado retangular, se forem pentágonos é chamado pentagonal...
Um prisma é chamado de REGULAR quando ele é um prisma RETO e suas bases são POLÍGONOS REGULARES.

RETO → as arestas laterais são todas perpendiculares aos planos das bases

REGULAR → as bases são polígonos cujos ângulos são todos iguais e todas as arestas das bases são iguais.

A área lateral de um prisma é a soma das áreas de todos os lados do prisma → não inclui a área das bases.
A área total de um prisma é a soma da área lateral às áreas das bases.
O volume de um prisma é a área da base multiplicada pela altura do prisma.

prisma quadrangular regular indicados lados, bases e arestas
paralelepípedo prisma quadrangular de lado da base a e altura h
Resolução:
Área Lateral$\;A_L\,=\,4\centerdot ah\,=\,32\;\Rightarrow\;ah\,=\,8\,m^2\phantom{X}$(I)
Volume$\,=\,A_{\large base}\centerdot h\,=\,a^{\large 2}\centerdot h \,=\,24\phantom{X}$(II)
Dividindo (II) por (I) temos:
$\;\dfrac{a^{\large 2}h}{ah}\,=\,\dfrac{24}{8}\;\Rightarrow\;\boxed{\,a\,=\,3\,m\,}\;$
Substituindo $\;a\,=\,3\;$ em (I):
$\;3\centerdot h\,=\,8\;\Rightarrow\;\boxed{\,h\,=\,\dfrac{8}{3}\,m\,}\;$
Resposta:As dimensões do prisma são
aresta da base igual a 3 m e altura igual a 8/3 m
×
(FUVEST - 2017) O paralelepípedo retorretângulo ABCDEFGH, representado na figura, tem medida dos lados AB = 4, BC = 2 e BF = 2.
O seno do ângulo HÂF é igual a
a)
$\,\dfrac{1}{2\sqrt{5}}\,$
b)
$\,\dfrac{1}{\sqrt{5}}\,$
c)
$\,\dfrac{2}{\sqrt{10}}\,$
d)
$\,\dfrac{2}{\sqrt{5}}\,$
e)
$\,\dfrac{3}{\sqrt{10}}\,$
paralelepípedo ABCDEFGH

 



resposta: Alternativa E
×
Demonstrar que, num paralelepípedo reto retângulo, o quadrado da soma das medidas das arestas é igual à soma do quadrado da diagonal com a área total.

 



resposta: demonstração.
Nesse caso o paralelepípedo é chamado RETO RETÂNGULO:
RETO significa: as arestas laterais são perpendiculares aos planos das bases.

As faces laterais de todo prisma reto são sempre retângulos

.
RETÂNGULO significa: suas bases são retângulos. Poderia ser chamado retangular.

Observação importante: Se você ainda não viu como calcular a diagonal de um paralelepípedo retangular reto veja este exercício sobre diagonal do prisma retangular reto.

prisma reto retangular
Resolução:

Queremos provar que a soma das medidas das arestas elevada ao quadrato é igual ao quadrado da diagonal somado à área total.

diagonal do prisma reto retânguo D
Hipótese:
$\,\left\{\begin{array}{rcr} \mbox{prisma reto retangular} & \\ \mbox{dimensões }\,a,\, b \mbox{ e }c\phantom{XX}\; &\\ \mbox{diagonal }\,D\phantom{XXXXX}\;\, & \\ \mbox{área total }\,A_{\large t}\phantom{XXXXX} & \end{array} \right.\,$
Tese:
$\,\lbrace(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\;$
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I)
2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II)
3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III)
então substituindo em (I) as assertivas (II) e (III) temos que:
$\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $

c.q.d.


×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
Num prisma reto, cada base é um retângulo que tem um lado o dobro do outro, a altura do prisma mede 15 cm e a área total 424 cm² .
Calcular as dimensões da base.

 



resposta:
O enunciado descreve um paralelepípedo reto retângulo com dimensões de (veja figura):
arestas da base x e 2x e
aresta lateral 15 cm .
Resolução:
paralelepípedo reto retângulo

Área Total:ATotal = 2(Abase) + Alateral = 424

Área Total$\;A_T\,=\,2(x\centerdot 2x\,+\,x\centerdot 15\,+\,2x\centerdot \,15)\,=\,424\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,15x\,+\,30x\,=\,212\;\Rightarrow\;$
$\;2x^{\large 2}\,+\,45x\,-\,212\,=\,0\;\Rightarrow\;$
$\,\left\{\begin{array}{rcr} x_1\,=\,4\;\phantom{XXXX}\;& \\ x_2\,\mbox{ raiz negativa }& \end{array} \right.\,$
Resposta:Como as bases medem x e 2x, então as arestas da base são iguais a
4 cm e 8 cm.
×
Calcular a área total de um paralelepípedo cujas faces são losangos congruentes de lados iguais a "a" . Sabe-se que uma diagonal da face também mede "a".

 



resposta:
Considerações:

Romboedro é o prisma oblíquo que tem todas as faces congruentes e em forma de losango.

O Romboedro não é um prisma regular porque não é reto — suas arestas "laterais" são oblíquas em relação aos "planos das bases".
O enunciado desse exercício descreve um romboedro de aresta "a".
romboedro de lado a
Resolução:
$\,A_{\large f}\,\longrightarrow\,\mbox{Área de uma face}\,$
$\,A_{\large t}\,\longrightarrow\,\mbox{Área total}\,$
$A_{\large f}\,=\,2\centerdot \dfrac{a^{\large 2}\sqrt3}{4}\,\Longrightarrow\;$ $\,A_{\large f}\,=\,\dfrac{a^{\large 2}\sqrt3}{2}\,$
$\,A_{\large t}\,=\,6\centerdot A_{\large f}\,=\,6\centerdot \dfrac{a^{\large 2}\sqrt3}{2}\,\Longrightarrow$
$\,\boxed{\,A_{\large t}\,=\,3a^{\large 2}\sqrt3\,}$
A área total do paralelepípedo é
$\,3a^{\large 2}\sqrt3\,$ unidades de medida de área.
×
O volume de um paralelepípedo retângulo é igual a 96 cm³ .Duas de suas dimensões medem 3 cm e 4 cm .Calcular a terceira dimensão.

 



resposta: 8 cm
×
O comprimento da base de um paralelepípedo retângulo é 3 cm maior que a largura. Sendo 22 cm o perímetro da base e 280 cm³ o seu volume, calcular a altura.

 



resposta: 10 cm
×
A soma das arestas de um paralelepípedo reto retângulo é 48 m . Calcular o seu volume, sabendo-se que as dimensões são números inteiros consecutivos.

 



resposta: 60 m³
×
Determine o volume do prisma quadrangular regular inscrito no cilindro equilátero da figura em função do raio da base do mesmo.
prisma quadrangular inscrito em um cilindro equilátero

 



resposta:
Resolução:
base do cilindro equilátero que contém um prisma quadrangular inscrito
1. calcular a aresta da base do prisma interno:

$\;\overline{AB}\;\rightarrow\;$ lado do quadrado inscrito

$\;\overline{AC}\;\rightarrow\;$ diagonal do quadrado e diâmetro $\;2R\;$

$\;AB\sqrt{2}\,=\,2R\;\Rightarrow\;$ $\;AB\,=\,\dfrac{2R}{\sqrt{2}}\centerdot\dfrac{\sqrt{2}}{\sqrt{2}}\;\Rightarrow\;$ $\;\overline{AB}\,=\,R\sqrt{2}\;$
2. calcular a altura do prisma interno:
Dizer que o cilindro é equilátero significa que sua secção meridiana é um quadrado. Portanto a altura do cilindro é igual ao diâmetro da base (2R).A altura do prisma é a mesma do cilindro (2R).
3. calcular o volume do prisma:
Volume = (Área da Base)×(altura)
$\;V\,=\,\left( R\sqrt{2}\right)^{\large 2}\centerdot 2R\;\Rightarrow\;$
$\;V\,=\,2R^{\large 2}\centerdot 2R\;=\;4R^{\large 3}\;$
Resposta: O volume do prisma em função do raio será
V = 4R³
×
(FUVEST - 2002) Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado lado $\,4\,$ cm e altura $\,20\sqrt{\,3\,}\;$cm , com $\,\frac{\,2\,}{\,3\,}\,$ de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando um ângulo de 30° com o solo. (Veja a seção lateral abaixo). Determinar a altura h do nível da água em relaçao ao solo.
paralelepípedo tombado

 



resposta: h = 21 cm
×
Calcular o volume de um paralelepípedo reto retângulo, sabendo-se que suas dimensões são proporcionais a 9, 12 e 20 e que a diagonal mede 100 m.

 



resposta: V = 138240 m³
×
Calcular o volume, a área total e a diagonal de um paralelepípedo reto retângulo, cujas dimensões são 3 m , 4 m e 12 m.

 



resposta: V = 144 m³ Atotal = 192m² D = 13 m
×
A área total de um paralelepípedo retângulo é 720 m², a diagonal de uma face mede 20 m e a soma das suas dimensões é 34 m. Calcular as dimensões.

 



resposta: 16m12m6m
×
Calcular o volume de um prisma reto, cuja base é um triângulo de lados medindo 4m, 6m e 8m respectivamente, e sabendo-se que a área lateral é 90m².

 



resposta: $\;V\,=\,15\sqrt{15}\,m^3\;$
×
(FUVEST) Na figura abaixo:
a)
ABCD e EFGH são trapézios de lados 2, 8, 5 e 5 .
b)
Os trapézios estão em planos paralelos, cuja distância é 3.
c)
As retas AE, BF, CG e DH são paralelas.
Calcule o volume do sólido.
prisma quadrangular reto com bases trapezoidais 

 



resposta: V = 60
×
(FUVEST) Uma caixa d'água tem forma cúbica com 1 metro de aresta. De quanto baixa o nível da água ao retirarmos 1 litro de água da caixa?

 



resposta: 0,001 m
×
Veja exercÍcio sobre:
paralelepípedo
prisma reto
prismas
geometria espacial
geometria de posição