resposta: a) $\,A(cos\alpha\,;\,sen\alpha)\,$, $\,B(cos\beta\,;\,sen\beta)\,$
$\,C(-cos\alpha\,;\,sen\alpha)\,$, $\,D(cos\beta\,;\,-sen\beta)\,$
b) $\,cos\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,x\,-\,sen\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,y\,-\,cos\dfrac{\beta\,-\,\alpha}{2}\,\centerdot\,cos(\beta\,+\,\alpha)\,=\,0\,$
c) basta provar que o produto dos coeficientes angulares de $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ é igual a -1.
×