Sabendo que $\;log_{{}_{\Large \,30\,}}3\;=\;a\phantom{X}$ e $\phantom{X}log_{{}_{\Large \,30\,}}5\;=\;b\;$, calcular $\;log_{{}_{\Large \,10\,}}2\;$
✓ mostrar resposta ... resposta: $\,\frac{\;1\,-\,a\,-\,b\;}{1\,-\,1}\,$
× Sabendo que $\;log_{{}_{\Large \,20\,}}2\;=\;a\phantom{X}$ e $\phantom{X}log_{{}_{\Large \,20\,}}3\;=\;b\;$, calcular $\phantom{X}log_{{}_{\Large \,6\,}}5\phantom{X}$
✓ mostrar resposta ... resposta: $\,\frac{\;1\,-\,2a\;}{a\,+\,b}\,$
× Se $\;log_{{}_{\Large \,ab\,}}a\;=\;4\phantom{X}$, calcule $\phantom{X}log_{{}_{\Large \,ab\,}}\dfrac{\,\sqrt[\Large 3]{\;a\;}\,}{\,\sqrt{\;b\;}\,}\;$.
✓ mostrar resposta ... Se $\;log_{{}_{\Large \,12\,}}27\;=\;a\phantom{X}$, calcule $\phantom{X}log_{{}_{\Large \,6\,}}16\;$.
✓ mostrar resposta ... resposta: $\,\frac{4(3\,-\,a)}{a\,+\,3}\,$
× Calcular $\;A\,=\,log_{{}_{\Large \,3\,}}5\,\centerdot\,log_{{}_{\Large \,4\,}}27\,\centerdot\,log_{{}_{\Large \,25\,}}\sqrt{2}\;$.
✓ mostrar resposta ... Simplificar a expressão $\;a^{\large log_{{}_{\Large \,a}}b\;\centerdot\;log_{{}_{\Large \,b}}c\;\centerdot\;log_{{}_{\Large \,c}}d}\;$.
✓ mostrar resposta ... Simplificar a expressão $\phantom{X}{\Large a}^{{}^{\dfrac{\,log(log{\large\;a})\,}{log{\large\,a}}}}\;$
✓ mostrar resposta ...