Considerando a matriz $\phantom{X}A\,=\,{\large(a_{ij})_{2\times3}}\phantom{X}$ com $\phantom{X}{\large a_{ij}}\,=\,2i\,+\,3j\phantom{X}$, podemos afirmar que a matriz transposta de A , também indicada por $\;A^t\;$, é:
(UBERABA) A matriz transposta da matriz $\phantom{X}A\,=\,({\large a_{ij}})\phantom{X}$, de tipo $\,3\times 2\,$, onde $\phantom{X}a_{ij}\,=\,2i\,-\,3j\phantom{X}$, é igual a:
(ITA - 1990) Sejam A, B e C matrizes quadradas n x n tais que A e B são inversíveis e ABCA = $\,A^t\,$, onde $\,A^t\,$ é a transposta da matriz A. Então, podemos afirmar que:
a)
C é inversível e $\,det C\,=\,det(AB)^{-1}\,$
b)
C é inversível e $\,det C\,=\,det(A)^{2}\centerdot det B$
c)
C não é inversível pois $\,det C\,=\,0\,$
d)
C é inversível e $\,det C\,=\,\dfrac{detA}{det B}\,$
e)
C é inversível e $\,det C\,=\,det B\,$
Nota: det X denota o determinante da matriz quadrada X.
O produto da matriz $\phantom{X}A\,=\,\begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ x & y \end{pmatrix}\phantom{X}$ pela sua transposta é a identidade. Determine $\,x\,$ e $\,y\,$ sabendo que $\,detA\,>\,0\,$