(ITA - 2004) Considere as afirmações dadas a seguir em que A é uma matriz quadrada $n \times n, \; n \geqslant 2\;$:
I.
O determinante de A é nulo se e somente se A possui uma linha ou uma coluna nula.
II.
Se $\;A = (a_{ij})\;$ é tal que $\;a_{ij}\,=\,0\;$ para $\;i\,>\,j\;$, com $\;i,j\,=\,1,\,2, ...., n\;$, então $\;det A\, =\, a_{11} a_{22} ... a_{nn}\;$.
III.
Se B for obtida de A multiplicando-se a primeira coluna por $\; \sqrt{2} \, + \, 1\; $ e a segunda por $\;\sqrt{2}\, - \, 1\;$, mantendo-se inalteradas as demais colunas, então $\;det B\, =\, det A\;$.
(UBERABA) Se $\phantom{X}A\,=\,({\large a_{ij}})\phantom{X}$ é a matriz quadrada de ordem 2, tal que $\phantom{X}{\large a_{ij}}\,=\,{\large (\;i\,)^j}\;,\,\vee \negthickspace \negthickspace \negthickspace \negthinspace - i\,,\,\vee \negthickspace \negthickspace \negthickspace \negthinspace - j\, \in\,\,\lbrace\,1\,;\,2\,\rbrace\phantom{X}$, então:
(ITA - 1990) Sejam A, B e C matrizes quadradas n x n tais que A e B são inversíveis e ABCA = $\,A^t\,$, onde $\,A^t\,$ é a transposta da matriz A. Então, podemos afirmar que:
a)
C é inversível e $\,det C\,=\,det(AB)^{-1}\,$
b)
C é inversível e $\,det C\,=\,det(A)^{2}\centerdot det B$
c)
C não é inversível pois $\,det C\,=\,0\,$
d)
C é inversível e $\,det C\,=\,\dfrac{detA}{det B}\,$
e)
C é inversível e $\,det C\,=\,det B\,$
Nota: det X denota o determinante da matriz quadrada X.
(PUC) A matriz $\phantom{X}A\,=\,(a_{\large ij})\phantom{X}$ é quadrada de ordem 2 com$\,\left\{\begin{array}{rcr} a_{\large ij}\,=\,2i\,-\,j\;\; & \mbox{ para }\; i\,=\,j \\ a_{\large ij}\,=\,3i\,-\,2j & \mbox{ para }\; i\,\neq\,j \\ \end{array} \right.\,$ O determinante de $\,A\,$ é igual a:
(ABC) Sejam as matrizes $\,A\;=\;\begin{pmatrix} 1& 1\; \\ 0& 1 \end{pmatrix}\;$ e $\;B\;=\;\begin{pmatrix} a& b\; \\ c& d \end{pmatrix} \phantom{X}\,$ Se o determinante de $\,AB\,$ é igual a zero, então, necessariamente, devemos ter:
(UFG) Se $\,A\;=\;\begin{pmatrix} 1& 1\; \\ 1& 1 \end{pmatrix}\phantom{X}$ então os valores de $\,{\large \lambda}\,$, tais que o determinante da matriz $\,A^{\large 2}\,-\,{\large \lambda}I_2\,$ é igual a zero, são:
a)
somente $\,{\large \lambda}\,=\,0\,$
b)
$\,{\large \lambda}\,=\,0\,$ ou $\,{\large \lambda}\,=\,2\,$
c)
qualquer que seja $\,{\large \lambda}\,$ real
d)
$\,{\large \lambda}\,=\,4\,$ ou $\,{\large \lambda}\,=\,2\,$
e)
$\,{\large \lambda}\,=\,0\,$ ou $\,{\large \lambda}\,=\,4\,$
(SANTA CASA - 1982) Seja a matriz quadrada $\,A\,=\,(a_{\large ij})\,$ de ordem 2, tal que: $\,\left\{\begin{array}{rcr} \operatorname{cos}\dfrac{\pi}{2i\,-\,j}\, & \mbox{, se } i\,=\,j \\ \operatorname{sen}\dfrac{\pi}{i\,+\,j}\;\; & \mbox{, se } i\,\neq\,j \end{array} \right.\,$ O determinante de $\,A\,$ é igual a:
A sentença $\,\begin{vmatrix} x & 1\; \\ 0 & x \end{vmatrix}\;+\;\begin{vmatrix} 0 & y\; \\ y & 1 \end{vmatrix}\;=\;\begin{vmatrix} x & y+1\; \\ y & x+1 \end{vmatrix}$
a)
é equivalente a $\,\begin{pmatrix} x & 1\; \\ 0 & x \end{pmatrix}\;+\;\begin{pmatrix} 0 & y\; \\ y & 1 \end{pmatrix}\;=\;\begin{pmatrix} x & y+1\; \\ y & x+1 \end{pmatrix}$