Lista de exercícios do ensino médio para impressão
(SANTA CASA - 1982) Seja a matriz quadrada $\,A\,=\,(a_{\large ij})\,$ de ordem 2, tal que:
$\,\left\{\begin{array}{rcr} \operatorname{cos}\dfrac{\pi}{2i\,-\,j}\, & \mbox{, se } i\,=\,j \\ \operatorname{sen}\dfrac{\pi}{i\,+\,j}\;\; & \mbox{, se } i\,\neq\,j \end{array} \right.\,$
O determinante de $\,A\,$ é igual a:
a)
$\,\dfrac{3}{4}\,$
b)
$\,\dfrac{1}{4}\,$
c)
$\,0\,$
d)
$\,-\dfrac{1}{4}\,$
e)
$\,-\dfrac{3}{4}\,$

 



resposta: Alternativa E
×
O conjunto solução de $\phantom{X}\dfrac{\begin{vmatrix} 1 & x\; \\ 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1\; \\ x & 1 \end{vmatrix}}\;=\;\begin{vmatrix} 1 & 1\; \\ x & 1 \end{vmatrix}\phantom{X}$ é:
a)
$\,\lbrace\,x\,\in \,\mathbb{R}\,\vert\,x\,\neq\,1\,\rbrace\,$
b)
$\,\lbrace\,0,\;1\,\rbrace\,$
c)
$\,\lbrace\,1\,\rbrace\,$
d)
$\,\lbrace\,-1\,\rbrace\,$
e)
$\,\lbrace\,0\,\rbrace\,$

 



resposta: Alternativa E
×
A sentença $\,\begin{vmatrix} x & 1\; \\ 0 & x \end{vmatrix}\;+\;\begin{vmatrix} 0 & y\; \\ y & 1 \end{vmatrix}\;=\;\begin{vmatrix} x & y+1\; \\ y & x+1 \end{vmatrix}$
a)
é equivalente a $\,\begin{pmatrix} x & 1\; \\ 0 & x \end{pmatrix}\;+\;\begin{pmatrix} 0 & y\; \\ y & 1 \end{pmatrix}\;=\;\begin{pmatrix} x & y+1\; \\ y & x+1 \end{pmatrix}$
b)
só é verdadeira se $\,x\,=\,y\,$ não ambos nulos.
c)
só é verdadeira se $\,x\,=\,y\,=\,0\,$
d)
nunca é verdadeira
e)
é equivalente a $\,x\,=\,y\,$

 



resposta: (E)
×
Veja exercÍcio sobre:
matriz quadrada
determinantes
matriz 2x2