Lista de exercícios do ensino médio para impressão
Construir os gráficos cartesianos das seguintes funções exponenciais:

a) $y\;=\;3^x$

b) $y\;=\;(\frac{1}{3})^x$

c) $y\;=\;4^x$

d) $y\;=\;10^x$

e) $y\;=\;10^{-x}$

f) $y\;=\;(\frac{1}{e})^x$

 



resposta:
a) $\;y\,=\,3^{\large x}\;$
gráfico cartesiano da função exponencial 3 elevado a x
b) $\;y\,=\,\left(\dfrac{1}{3}\right)^{\large x}\;$
gráfico da função y igual um terço elevado a x
c) $\;y\,=\,4^{\large x}\;$
gráfico cartesiano da função exponencial 4 elevado a x

×
Contruir o gráfico cartesiano da função em $\;\mathbb{R}\;$ definida por $\;f(x)\,=\,2^{2x - 1}$

 



resposta:
×
Construir os gráficos das funções em $\;\mathbb{R}\;$ definidas por:
a)
$f(x)\;=\;2^{\large 1-x}$
b)
$f(x)\;=\;3^{\large \frac{x + 1}{2}}$
c)
$f(x)\;=\;2^{\large |x|}$
d)
$f(x)\;=\;({\large\frac{1}{2}})^{\large 2x + 1}$
e)
$f(x)\;=\;({\large\frac{1}{2}})^{\large |x|}$

 



resposta:
a)
gráfico da função 2 elevado a 1 menos x
b)
gráfico da função f de x igual a 3 elevado à fração x + 1 sobre 2
c)
d)
e)

×
Construir os gráficos das funções em $\;{\rm I\!R}\;$ definidas por:
a)
$\;{\large f(x)\;=\;2^{x}\;+\;2^{-x}}$
b)
$\;{\large f(x)\;=\;2^{x}\;-\;2^{-x}}$

 



resposta:
×
(ITA - 1990) O conjunto de soluções reais da equação $\phantom{X}|\,\ell n ( \operatorname{sen^2}x)\,|\,=\,\ell n (\operatorname{sen^2}x)\phantom{X}$ é dado por:
a)
$\,\lbrace\,x\in\,\mathbb{R}\,|\,x\,=\,{\Large \frac{\pi}{2}}\,+\,k\pi,\,k\,\in\,\mathbb{Z}\,\rbrace\,$
b)
$\,\lbrace\,x\in\,\mathbb{R}\,|\,x\,=\,\pi\,+\,k{\Large \frac{\pi}{2}},\,k\,\in\,\mathbb{Z}\,\rbrace\,$
d)
$\,\lbrace\,x\in\,\mathbb{R}\,|\,-1\,\leqslant\,x\,\leqslant\,1\,\rbrace\,$
c)
$\,\lbrace\,x\in\,\mathbb{R}\,|\,x\,=\,2k\pi,\,k\,\in\,\mathbb{Z}\,\rbrace\,$
e)
$\,\lbrace\,x\in\,\mathbb{R}\,|\,x\,\geqslant\,0\,\rbrace\,$

 



resposta: alternativa A
×
(ITA - 1990) Sabendo-se que $\,3x\,-\,1\,$ é fator de $\,12x^3\,-\,19x^2\,+\,8x\,-\,1\,$ então as soluções reais da equação $\phantom{X}12(3^{3x})\,-\,19(3^{2x})\,+\,8(3^x)\,-\,1\,=\,0\phantom{X}$ somam:
a)
$\,-log_3 {\large 12}\,$
b)
$\,1\,$
c)
$\,-{\Large \frac{1}{3}}log_3{\large 12}\,$
d)
$\,-1\,$
e)
$\,log_3 {\large 7}\,$

 



resposta: alternativa A
×
(FUVEST - 2018) Sejam $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ e $\;g\,:\, \mathbb{R}^+ \rightarrow \mathbb{R} \;$ definidas por
$\phantom{XXX}f(x) = \dfrac{1}{2}5^{\large x}\phantom{X}$ e $\phantom{X}g(x) = log_{10}{\large x}\phantom{X}$, respectivamente.
O gráfico da função composta $\,g\, \circ\, f\,$ é:
a)
alternativa A
d)
alternativa D
b)
alternativa B
e)
alternativa E
c)
alternativa C

 



resposta: (A)
×
(FUVEST - 1977) Construa o gráfico da relação definida pelas desigualdades:

$\phantom{XXX} \left\{\begin{array}{rcr} log_2(y\,-\,x^2)\,\geqslant & log_218\,-\,2\,log_23 \\ \left(\dfrac{1}{2}\right)^{\large 3x\,-\,y}\,\leqslant\,1 & \\ \end{array} \right.$

 



resposta:
gráfico cartesiano das inequações

×
Assinale a falsa:
a)
$\phantom{X}log_{\,2\,}8\,=\,3\phantom{X}$
b)
$\phantom{X}log_{\,4\,}16\,=\,2\phantom{X}$
c)
$\phantom{X}log_{\,3\,}9\,=\,2\phantom{X}$
d)
$\phantom{X}log_{\,10\,}100\,=\,10\phantom{X}$
e)
$\phantom{X}log_{\,10\,}1000\,=\,3\phantom{X}$
 
 

 



resposta: (D)
×
O logaritmo de 3 na base 81 vale:
a)
4
b)
-4
c)
-1/4
d)
1/4
e)
±4

 



resposta: (D)
×
O valor de $\,log_{\,100\,}0,001\,$ é:
a)
-3/2
b)
-2/3
c)
2/3
d)
3/4
e)
0,1

 



resposta: (A)
×
Calcular o logaritmo de $\phantom{X}8\centerdot \sqrt[\LARGE 3\,]{\,2\,}\phantom{X}$ na base $\phantom{X}2\centerdot\sqrt{2}\,$

 



resposta: 20/9
×
Determinar a base de um sistema de logaritmos em que o logaritmo de 81 vale 2 .

 



resposta: 9
×
(UnB) Se $\,a\,=\,log_{\,8\,}225\,$ e $\,b\,=\,log_{\,2\,}15\,$ então:
a)
$\,a\,=\,\dfrac{2b}{3}\,$
b)
$\,a\,=\,\dfrac{b}{2}\,$
c)
$\,a\,=\,\dfrac{3b}{2}\,$
d)
$\,a\,=\,\dfrac{b}{3}\,$
e)
$\,a\,=\,\dfrac{2b}{5}\,$
 
 

 



resposta: (A)
×
(VUNESP) O valor da expressão $\phantom{X}\dfrac{\;log_{\,3\,}9\,-\,(-3)^{\large 2}\,-\,\sqrt[\Large 3\,]{-27}\;}{\;(-1)^{\large 3}\,-\,(-\,\dfrac{1}{2})^{\large 2}\,-\,\dfrac{11}{4}\;}\phantom{X}$ é:
a)
$\,-(\dfrac{7}{2})\,$
b)
$\,-(1)\,$
c)
$\,\dfrac{7}{2}\phantom{XX}$
d)
$\,1\,$
e)
$\,(\dfrac{16}{13})\,$
 
 

 



resposta: (D)
×
(PUCC) O logaritmo de um número x na base a é -1 , e o logaritmo do mesmo número x na base 2a é -2 . Então a soma a + x é:
a)
$\,\dfrac{3}{\,4\,}\,$
b)
$\,4\,$
c)
$\,16\,$
d)
$\,\dfrac{1}{\,4\,}\,$
e)
$\,\dfrac{17}{\,4\,}\,$

 



resposta: (E)
×
O valor de $\phantom{X}{\Large 9\,}^{\Large log_{{}_{\,3\,}}\sqrt{\LARGE\,2\,} }\phantom{X}$ é:
a)
$\,\sqrt{\,2\,}\,$
b)
$\,2\,$
c)
$\,9\,$
d)
$\,2^{\Large 9}\,$
e)
$\,(\sqrt{\,2\,})^{\Large 9}\,$

 



resposta: (B)
×
Sendo$\phantom{X}{\large e}\phantom{X}$o número de Neper, o valor de $\phantom{X}{\Large e\,}^{{}^{\LARGE 1\,+\,log_{\Large \,e\,}\pi}}\phantom{X}$ é:
a)
$\,\pi^e\,$
b)
$\,e^{\pi}\,$
c)
$\,\frac{\,\pi\,}{e}\,$
d)
$\,\frac{\,e\,}{\pi}\,$
e)
$\,\pi\centerdot e\,$

 



resposta: (E)
×
Sendo $\phantom{X}log_{{}_{\Large\,5\,}}a\;=\;m\phantom{X}$ e $\phantom{X}log_{{}_{\Large\,5\,}}b\;=\;n\phantom{X}$ com a > 0 e b > 0 , calcular, em função de m e n , o valor dos logaritmos apresentados a seguir:
a)
$\,log_{\,5\,}(ab)\,$
b)
$\,log_{\,5\,}(\dfrac{a}{b})\,$
c)
$\,log_{\,5\,}(a^2\,\centerdot\,b^3)\,$
d)
$\,log_{\,5\,}(\sqrt[\Large 3\,]{a}\,\centerdot\,\sqrt[\Large 4\,]{b})\,$

 



resposta: a)m + n b) m - n c) 2m + 3n d)$\,\dfrac{1}{3}m\,+\,\dfrac{1}{4}n\,$
×
(PUC) Para todo x > 0 , $\,log_{{}_{\Large \,2\,}}4x\,$ é igual a:
a)
$\,2\,+\,log_{\,2\,}x\,$
b)
$\,2\,log_{\,2\,}x\,$
c)
$\,4\,log_{\,2\,}x\,$
d)
$\,log_{\,8\,}x\,$
e)
$\,log_{\,2\,}(4\,+\,x)\,$

 



resposta: (A)
×
(MACKENZIE) O valor de $\phantom{X}log_{{}_{\Large\,3\,}}5\,\centerdot\,log_{{}_{\Large\,25\,}}27\phantom{X}$ é:
a)
$\,\frac{2}{3}\,$
b)
$\,\frac{3}{2}\,$
c)
 2  
d)
3
e)
1
 
 

 



resposta: (B)
×
(FGV) O produto $\;(log_{{}_{\Large \,3\,}}2)\,\centerdot\,(log_{{}_{\Large \,2\,}}5)\,\centerdot\,(log_{{}_{\Large \,5\,}}3)\;$ é igual a:
a)
0  
b)
1
c)
10
d)
30
e)
$\,\dfrac{1}{10}\,$
 
 

 



resposta: (B)
×
Supondo satisfeitas todas as condições de existência e sabendo-se que $\phantom{X}log_{{}_{\LARGE\,c\,}}a\,=\,\dfrac{1}{3}\phantom{X}$ e $\phantom{X}log_{{}_{\LARGE\,c\,}}b\,=\,20\;$, o valor de $\phantom{X}log_{{}_{\LARGE\,c\,}}(\dfrac{\;a^{{}^{\Large 3}}\,\sqrt[\Large 4]{\,b\,}\;}{c^{\,\large 2}})\phantom{X}$ é:
a)
1
b)
-1
c)
4
d)
2
e)
0

 



resposta: (C)
×
(PUCC) A expressão $\phantom{X}log_2\,\sqrt[\large 210\,]{2}\,+\,log_2\,\sqrt[\large 210\,]{2^2}\,+\,...\,+\,log_2\,\sqrt[\large 210\,]{2^{20}}\phantom{X}$ é igual a:
a)
2
b)
$\,\dfrac{1}{\,\sqrt{210\,}}\,$
c)
$\,\dfrac{1}{\,210\,}\,$
d)
0
e)
1

 



resposta: (E)
×
Assinale a falsa:
a)
$\,colog_{\,3\,}81\,=\,-4\,$
b)
$\,colog_{\,2\,}16\,=\,-4\,$
c)
$\,antilog_{\,2\,}3\,=\,8\,$
d)
$\,antilog_{\,3\,}4\,=\,81\,$
e)
$\,colog_{\,3\,}27\,=\,3\,$
 
 

 



resposta: (E)
×
Calcular os seguintes logaritmos:
a)
$\,log_{{}_{\Large \,2\,}}\dfrac{1}{8}\,$
b)
$\,log_{{}_{\Large \,8\,}}4\,$
c)
$\,log_{{}_{\Large \,0,25\,}}32\,$

 



resposta: a) -3 b) 2/3 c) -5/2
×
Calcular os seguintes logaritmos:
a)
$\,log_{{}_{\Large \,4\,}}16\,$
b)
$\,log_{{}_{\Large \,3\,}}\dfrac{1}{9}\,$
c)
$\,log_{{}_{\Large \,81\,}}3\,$
d)
$\,log_{{}_{\Large \,\frac{1}{2}\,}}8\,$
e)
$\,log_{{}_{\Large \,7\,}}\dfrac{1}{7}\,$
f)
$\,log_{{}_{\Large \,27\,}}81\,$
g)
$\,log_{{}_{\Large \,125\,}}25\,$
h)
$\,log_{{}_{\Large \,\frac{1}{4}\,}}32\,$
i)
$\,log_{{}_{\Large \,9\,}}\dfrac{1}{27}\,$
j)
$\,log_{{}_{\Large \,0,25\,}}8\,$
k)
$\,log_{{}_{\Large \,25\,}}0,008\,$
l)
$\,log_{{}_{\Large \,0,01\,}}0,001\,$

 



resposta: a) 2 b) -2 c) 1/4 d) -3 e) -1 f) 4/3 g) 2/3 h) -5/2 i) -3/2 j) -3/2 k) -3/2 l) 3/2
×
Calcular, de acordo com a definição, os logaritmos:
a)
$\,log_{{}_{\Large \,2\,}}\sqrt{\,2\,}\,$
b)
$\,log_{{}_{\Large \,\sqrt[\Large 3\,]{7}\,}}49\,$
c)
$\,log_{{}_{\Large \,100\,}}\sqrt[\Large 3\,]{\,10\,}\,$
d)
$\,log_{{}_{\Large \,\sqrt{\,8\,}\,}}\sqrt{\,32\,}\,$
e)
$\,log_{{}_{\Large \,\sqrt[\Large 3\,]{\,5\,}\,}}\sqrt[\LARGE 4\,]{\Large\,5\,}\,$
f)
$\,log_{{}_{\Large \,\sqrt{27}\,}}\sqrt[\Large 3\,]{\,9\,}\,$
g)
$\,log_{{}_{\Large \,\frac{1}{\,\sqrt{\,3\,}\,}\,}}\sqrt{\,27\,}\,$
h)
$\,log_{{}_{\Large \,\sqrt[\Large 3\,]{\,4\,}\,}}\dfrac{1}{\,\sqrt{\,8\,}\,}\,$
i)
$\,log_{{}_{\Large \,\sqrt[\Large 4\,]{\,3\,}\,}}\dfrac{3}{\sqrt[\Large 3\,]{\,3\,}}\,$

 



resposta: a) 1/2 b) 6 c) 1/6 d) 5/3 e) 3/4 f) 4/9 g) -3 h) -9/4 i) 8/3 j) -3/2 k) -3/2 l) 3/2
×
Calcular as somas seguintes:
a)
$\;log_{{}_{\Large \,100\,}}0,001\;$ $+\;log_{{}_{\Large \,1,5\,}}\dfrac{\,4\,}{9}\;$ $- \; log_{{}_{\Large \,1,25\,}}0,64\; = $
 
b)
$\;log_{{}_{\Large \,8\,}}\sqrt{\,2\,}\;$ $+\;log_{{}_{\Large \,\sqrt{\,2\,}\,}}8\; $ $- \; log_{{}_{\Large \,\sqrt{\,2\,}\,}}\sqrt{\,8\,}\; = $
 
c)
$\;log_{{}_{\Large \,\sqrt[\large 3\,]{\,9\,}\,}}\sqrt{\,\dfrac{1}{\,27\,}\,}\; $ $- \;log_{{}_{\Large \,\sqrt[\large 3\,]{\,0,5\,}\,}}\sqrt{\,8\,}\; $ $+ \; log_{{}_{\Large \,\sqrt[\large 3\,]{\,100\,}\,}}\sqrt[\large 6\,]{\,0,1\,}\; = $
 
d)
$\;log_{{}_{\Large \,4\,}}(log_{\,3\,}9)\; $ $+ \;log_{{}_{\Large \,2\,}\,}(log_{\,81\,}3)\; $ $+ \; log_{{}_{\Large \,0,8\,}}(log_{\,16\,}32)\; = $

 



resposta: a) -3/2 b) 19/6 c) 2 d) -5/2
×
Calcular os seguintes antilogs:
a)
$\,antilog_{{}_{\Large \,3\,}}4\,$
b)
$\,antilog_{{}_{\Large \,16\,}}\dfrac{1}{\,2\,}\,$
c)
$\,antilog_{{}_{\Large \,3}}-2\,$
d)
$\,antilog_{{}_{\Large \frac{1}{\,2\,}}}(-4)\,$

 



resposta: a) 81 b) 4 c) 1/9 d) 16
×
Calcular, o valor de:
a)
$\,8^{{}^{\Large log_{{}_{\large \,2\,}}5}}\,$
b)
$\,3^{{}^{\Large 1\,+\,log_{{}_{\large \,3\,}}4}}\,$
c)
$\,3^{{}^{\Large \,log_{{}_{\large \,3\,}}2}}\,$
d)
$\,4^{{}^{\Large log_{{}_{\large \,2\,}}3}}\,$
e)
$\,5^{{}^{\Large log_{{}_{\large \,25\,}}2}}\,$
f)
$\,8^{{}^{\Large log_{{}_{\large \,4\,}}5}}\,$
g)
$\,2^{{}^{\Large 1\,+\,log_{{}_{\large \,2\,}}5}}\,$
h)
$\,3^{{}^{\Large 2\,-\,log_{{}_{\large \,3\,}}6}}\,$
i)
$\,8^{{}^{\Large 1\,+\,log_{{}_{\large \,2\,}}3}}\,$
j)
$\,9^{{}^{\Large 2\,-\,log_{{}_{\large \,3\,}}\sqrt{\,2\,} }}\,$

 



resposta: a) 125 b) 12 c) 2 d) 9 e) $\sqrt{2}$ f) $5\sqrt{5} g) 10 h) 3/2 i) 216 j) 81/2
×
Sendo a , b e c números reais positivos, desenvolver as expressões abaixo.
a)
$\;log_{{}_{\Large \,2\,}}\left(\dfrac{\,2ab\,}{c}\right)\,$
b)
$\;log_{{}_{\Large \,3\,}}\left(\dfrac{\,a^{\large 3}b^{\large 2}\,}{c^{\large 4}}\right)\,$
c)
$\;log\,\left(\dfrac{\,a^{\large 3}\,}{\,b^{{}^{\Large 2}}\,\centerdot\,\sqrt{\,c\,}\,}\right)\,$

 



resposta: a) $1\,+\,log_2\,a\,+\,log_2\,b\,-\,log_2\,c$ b) $3\,log_3\,a\,+\,2\,log_3\,b\,-\,4\,log_3\,c$ c) $\,3\,log\,a\,-\,2\,log\,b\,-\,\dfrac{1}{2}\,log\,c$
×
Desenvolver as expressões abaixo aplicando as propriedades dos logaritmos.
a)
$\;log_{{}_{\Large \,5\,}}(\dfrac{\,5a\,}{bc})\,$
b)
$\;log_{{}_{\Large \,3\,}}(\dfrac{\,ab^2\,}{c})\,$
c)
$\;log_{{}_{\Large \,2\,}}\left(\dfrac{\,a^2\,\sqrt{\,b\,}\,}{\sqrt[\large \,3\,]{\,c\,}} \right) $
d)
$\;log_{{}_{\Large \,3\,}}\left(\dfrac{\,a\,\centerdot\,b^3\,}{c\,\centerdot\,\sqrt[\large \,3\,]{\,a^2\,}}\right)\,$
 
e)
$\;log\sqrt{\dfrac{\,ab^3\,}{c^2}}\,$
f)
$\;log_{{}_{\Large \,3\,}}\sqrt[\Large 3\,]{\dfrac{\,a\,}{\,b^2\,\centerdot\,\sqrt{\,c\,}}}\,$
 
g)
$\;log_{{}_{\Large \,2\,}}\sqrt{\dfrac{\,4a\,\sqrt{\,ab\,}}{\,b\;\sqrt[\Large 3\,]{\,a^2b\,}}}\,$
 
h)
$\;log\,\left(\sqrt[\LARGE 3\,]{\dfrac{\,a^{\large 4}\,\sqrt{\,ab\,}}{\,b^2\;\sqrt[\Large 3\,]{\,bc\,}}}\right)^{\Large 2}\,$

 



resposta: a) $\,1\,+\,log_5a\,-\,log_5b\,-log_5c\,$ b) $\,log_3a\,+\,2\,log_3b\,-\,log_3c\,$ c) $2\,log_2a\,+\,\frac{1}{2}log_2b\,-\,\frac{1}{3}log_2c$ d) $\,\frac{1}{3}\,log_3a\,+\,3\,log_3b\,-\,log_3c$ e) $\frac{1}{2}\,log\,a\,+\,\frac{3}{2}log\,b\,-\,log\,c$ f) $\frac{1}{3}\,log\,a\,-\,\frac{2}{3}log\,b\,-\,\frac{1}{6}log\,c$ g) $\,2\,+\,\frac{5}{12}log_2a\,-\,\frac{5}{12}log_2b\,$h) $\,3\,log\,a\,-\,\frac{11}{9}log\,b\,-\,\frac{2}{9}log\,c\,$
×
Calcular:
a) $\,antilog_{\,2\,}(log_2\,3)\;$ b)$\,antilog_{\,3\,}(log_3\,5)\,$

 



resposta: a) 3 b) 5
×
Desenvolver aplicando as propriedades dos logaritmos. Obs. a > b > c > 0 .
a)
$\;log_{{}_{\Large \,2\,}}\dfrac{2a}{\;a^2\,-\,b^2\;}\;$ 
b)
$\;log_{{}_{\Large \,2\,}}\dfrac{a^2\,\sqrt{\,bc\,}}{\;\sqrt[\LARGE 5]{\,(a\,+\,b)^3}\;}\;$
c)
$\;log\left(c\,\centerdot\,\sqrt[\LARGE 3]{\dfrac{\;a(a\,+\,b)^2}{\sqrt{\;b\;}}} \right)\;$
d)
$\;log\left(\dfrac{\;\sqrt[\Large 5]{a(a\,-\,b)^2}\;}{\sqrt{a^2\,+\,b^2}} \right)\;$

 



resposta: a) b) c) d)
×
Sendo a, b e c reais positivos, escreva as expressões cujos desenvolvimentos logaritmicos são dados.
a)
$\;log_{{}_{\Large \,2\,}}a\,+\,log_{{}_{\Large \,2\,}}b\,-\,log_{{}_{\Large \,2\,}}c\;$
b)
$\;2\,log\,a\;-\;log\,b\;-\;3\,log\,c\;$
c)
$\;2\,-\,log_{{}_{\Large \,3\,}}a\,+\,3\,log_{{}_{\Large \,3\,}}b\,-\,2\,log_{{}_{\Large \,3\,}}c\;$
d)
$\;\dfrac{\;1\;}{2}\,log\;a\,-\;2\,log\,b\;-\;\dfrac{\;1\;}{3}\,log\,c\;$
e)
$\;\dfrac{\;1\;}{3}\,log\;a\,-\;\dfrac{\;1\;}{2}\,log\,c\;-\;\dfrac{\;3\;}{2}\,log\,b\;$
f)
$\;2\;+\;\dfrac{\;\,1\,\;}{3}\,log_{{}_{\Large \,2\,}}a\,+\,\dfrac{\;\,1\,\;}{6}\,log_{{}_{\Large \,2\,}}b\,-\,log_{{}_{\Large \,2\,}}c\;$
g)
$\;\dfrac{\;1\;}{4}(log\,a\;-\;3\,log\,b\;-\;2\,log\,c)\;$

 



resposta: a) b) c) d)
×
Se $\;log\,2\;=\;a\phantom{X}$ e $\phantom{X}log\,3\;=\;b\;$, colocar em função de $\,a\,$ e $\,b\,$ os seguintes logaritmos decimais:
a)
$\,log\,6\,$ 
b)
$\,log\,4\,$
c)
$\,log\,12\,$
d)
$\,log\,\sqrt{\,2\,}\,$
e)
$\,log\,0,5\,$
f)
$\,log\,20\,$
g)
$\,log\,5\,$
h)
$\,log\,15\,$

 



resposta: a) b) c) d)
×
Sabendo que $\;log_{{}_{\Large \,30\,}}3\;=\;a\phantom{X}$ e $\phantom{X}log_{{}_{\Large \,30\,}}5\;=\;b\;$, calcular $\;log_{{}_{\Large \,10\,}}2\;$

 



resposta: $\,\frac{\;1\,-\,a\,-\,b\;}{1\,-\,1}\,$
×
Sabendo que $\;log_{{}_{\Large \,20\,}}2\;=\;a\phantom{X}$ e $\phantom{X}log_{{}_{\Large \,20\,}}3\;=\;b\;$, calcular $\phantom{X}log_{{}_{\Large \,6\,}}5\phantom{X}$

 



resposta: $\,\frac{\;1\,-\,2a\;}{a\,+\,b}\,$
×
Se $\;log_{{}_{\Large \,ab\,}}a\;=\;4\phantom{X}$, calcule $\phantom{X}log_{{}_{\Large \,ab\,}}\dfrac{\,\sqrt[\Large 3]{\;a\;}\,}{\,\sqrt{\;b\;}\,}\;$.

 



resposta: 17/6
×
Se $\;log_{{}_{\Large \,12\,}}27\;=\;a\phantom{X}$, calcule $\phantom{X}log_{{}_{\Large \,6\,}}16\;$.

 



resposta: $\,\frac{4(3\,-\,a)}{a\,+\,3}\,$
×
Calcular $\;A\,=\,log_{{}_{\Large \,3\,}}5\,\centerdot\,log_{{}_{\Large \,4\,}}27\,\centerdot\,log_{{}_{\Large \,25\,}}\sqrt{2}\;$.

 



resposta: 3/8
×
Simplificar a expressão $\;a^{\large log_{{}_{\Large \,a}}b\;\centerdot\;log_{{}_{\Large \,b}}c\;\centerdot\;log_{{}_{\Large \,c}}d}\;$.

 



resposta: d
×
Simplificar a expressão $\phantom{X}{\Large a}^{{}^{\dfrac{\,log(log{\large\;a})\,}{log{\large\,a}}}}\;$

 



resposta: log a
×
O número, cujo logaritmo na base $\,a\,$ é 4 e na base $\,\frac{\,a\,}{\,3\,}\,$ é 8, é:
a)
3
b)
81
c)
27
d)
6561
e)
243

 



resposta: (D)
×
(MACKENZIE - 1975) O logaritmo de 144 no sistema de base $\,2\sqrt{\,3\,}\,$ é igual a:
a)
$\,\sqrt{3}\,$
b)
$\,2\sqrt{3}\,$
c)
2
d)
3
e)
4

 



resposta: (E)
×
Veja exercÍcio sobre:
função
função exponencial
funções exponenciais
logaritmo
potenciação