Lista de exercícios do ensino médio para impressão
Resolver as inequações:
a)
$\,4\,\lt\,x^2\,-\,12\,\leqslant\,4x\,$
b)
$\,x^2\,+\,1\,\lt\,2x^2\,-\,3\,\leqslant\,-5x\,$
c)
$\,0\,\leqslant\,x^2\,-\,3x\,+\,2\,\leqslant\,6\,$
d)
$\,7x\,+\,1\,\lt\,x^2\,+\,3x\,-\,4\,\leqslant\,2x\,+\,2\,$
e)
$\,0\,\lt\,x^2\,+\,x\,+\,1\,\lt\,1\,$
e)
$\,4x^2\,-\,5x\,+\,4\,\lt\,3x^2\,-\,6x\,+\,6\,\lt\,x^2\,+\,3x\,-\,4\,$

 



resposta: a)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;4\,\lt\,x\,\leqslant\,6\rbrace$
b)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-3\,\leqslant\,x\,\lt\,-2\rbrace$
c)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-1\,\leqslant\,x\,\leqslant\,1\phantom{X}{\text ou}\phantom{X}2\,\leqslant\,x\,\leqslant\,4\rbrace$
d)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-3\,\leqslant\,x\,\lt\,-1\rbrace$
e)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-1\,\lt\,x\,\lt\,0\rbrace$
f)$\,\mathbb{S}\,=\,\varnothing\;$

×
Resolver os sistemas de inequações:
a)
$\,\left\{\begin{array}{rcr} x^2\,+\,x\,-\,2\;\gt\;0 & \\ 3x\,-\,x^2\,\lt\,0\phantom{XX}& \\ \end{array} \right.\,$ 
b)
$\,\left\{\begin{array}{rcr} x^2\,+\,x\,-\,20\;\leqslant\;0\;\;& \\ x^2\,-\,4x\,-\,21\,\gt\,0\;& \\ \end{array} \right.\,$
c)
$\,\left\{\begin{array}{rcr} 1\,+\,2x\;\geqslant\;0\phantom{XXXX}& \\ -4x^2\,+\,8x\,-\,3\,\lt\,0\;& \\ \end{array} \right.\,$
d)
$\,\left\{\begin{array}{rcr} -2x^2\,-\,x\,+\,1\,\geqslant\,0\phantom{X}& \\ 4x^2\,-\,8x\,+\,3\;\leqslant\,0\phantom{X}& \\ \end{array} \right.\,$

 



resposta: a)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,\lt\,-2\,\phantom{X}{\text ou}\phantom{X}x\,\gt\,3\rbrace$
b)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-5\,\leqslant\,x\,\lt\,-3\rbrace$
c)$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-\frac{1}{2}\,\leqslant\,x\,\leqslant\,\frac{1}{2}\phantom{X}{\text ou}\phantom{X}x\,\gt\,\frac{3}{2}\rbrace$
d)$\,\mathbb{S}\,=\,\lbrace \frac{1}{2}\rbrace$

×
Resolver a inequação $\phantom{X}x^4\,-\,5x^2\,+\,4\,\geqslant\,0\phantom{X}$ em $\,{\rm I\!R}\,$.

 



resposta: $\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,\leqslant\,-2\,\phantom{X}{\text ou}\phantom{X}-1\,\leqslant\,x\,\leqslant\,1\phantom{X}{\text ou}\phantom{X}x\,\geqslant\,2\rbrace$

×
Resolver em $\,{\rm I\!R}\,$ as inequações a seguir:
a)
$\,x^4\,-\,10x^2\,+\,9\,\leqslant\,0\,$
b)
$\,x^4\,-\,3x^2\,-\,9\,\gt\,0\,$
c)
$\,x^4\,+\,8x^2\,-\,9\,\lt\,0\phantom{X}$
d)
$\,2x^4\,-\,3x^2\,+\,4\,\lt\,0\,$
e)
$\,x^6\,-\,7x^3\,-\,8\,\geqslant\,0\phantom{X}$
f)
$\,3x^4\,-\,5x^2\,+\,4\,\gt\,0\,$

 



resposta: a) $\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-3\,\leqslant\,x\,\leqslant\,-1\,\phantom{X}{\text ou}\phantom{X}1\,\leqslant\,x\,\leqslant\,3\rbrace$
b) $\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,\lt\,-2\,\phantom{X}{\text ou}\phantom{X}x\,\gt\,2\rbrace$
c) $\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-1\,\lt\,x\,\lt\,1\rbrace$
d) $\,\mathbb{S}\,=\,\varnothing\,$
e) $\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,\leqslant\,-1\,\phantom{X}{\text ou}\phantom{X}x\,\geqslant\,2\rbrace$
a) $\,\mathbb{S}\,=\,{\rm I\!R}\,$

×
Veja exercÍcio sobre: inequação do segundo grau II