Lista de exercícios do ensino médio para impressão
(PUC-SP - 1981) Qual é o valor de x na figura ao lado?
a)
$\frac{\sqrt{3}}{3}$
b)
$\frac{5\sqrt{3}}{3}$
c)
$\frac{10\sqrt{3}}{3}$
d)
$\frac{15\sqrt{3}}{4}$
e)
$\frac{20\sqrt{3}}{3}$
triângulo retângulo com ângulos 30 graus e hipotenusa 40

 



resposta: Alternativa E
×
Com os dados das figuras abaixo, determine n .
triângulo ABC com hipotenusa 10

 



resposta: n = 6,4
×
A altura do triângulo equilátero de lado $3$ cm. mede:
a)
$ \dfrac{1}{2} $ cm
b)
$\dfrac{3}{2}$ cm
c)
$\dfrac{\sqrt{3}}{2}$ cm
d)
$\dfrac{\sqrt{3}}{4}$ cm
e)
$\dfrac{3\sqrt{3}}{2}$ cm

 



resposta: Alternativa E
Resolução:
Conforme a figura, no triângulo equilátero $\,ABC\,$ de lado 3 cm é traçada a altura $\,h\,$, que é perpendicular a $\,\overline{BC}\,$ e divide o segmento no seu ponto médio $\,M\,$.Considerando-se o triângulo retângulo $\,AMC\,$, temos:
hipotenusa
$\,\overline{AC}\,=\,3\,cm\,$
cateto
$\,\overline{MC}\,=\,\dfrac{3}{2}\,cm\,$
cateto
$\,\overline{AM}\,=\,h\,$
e pelo Teorema de Pitágoras:
$\,\boxed{(AC)^2\,=\,(MC)^2\,+\,(AM)^2}\;\Rightarrow\;$ $ 3^2\,=\;(\dfrac{3}{2})^2\,+\,h^2\;\Rightarrow\,$
$\,\Rightarrow\;h^2 \,=\,9\,-\,\dfrac{9}{4}\;\Rightarrow\;h\,=\,\sqrt{\dfrac{36\,-\,9}{4}}\;\Rightarrow$
$\,\Rightarrow\;h\,=\,\sqrt{\dfrac{27}{4}}\,=\,\sqrt{\dfrac{3\centerdot9}{4}}\,=\,\dfrac{3\sqrt{3}}{2}\,$
o valor $\,\dfrac{3\sqrt{3}}{2}\,$ é satisfeito pela alternativa (E).
Observações:
●É importante verificar nas respostas se a unidade de medida confere: centímetros.
●Para unidades de medida-distância consideramos apenas os valores positivos.
●Para quem vai prestar concurso é importante memorizar que a altura de um triângulo EQUILÁTERO de lado $\,\ell\,$ é igual a $\,\dfrac{\ell\sqrt{3}}{2}\,$.

×
Num triângulo retângulo, a hipotenusa menos o cateto maior é igual a $\;3\;m$, a hipotenusa menos o cateto menor é igual a $\;6\;m$. Calcule os catetos e a hipotenusa.

 



resposta:
Resolução:
$\;a - b = 3\;\Rightarrow\;b = a - 3\phantom{X}$(I)
$\;a - c = 6\;\Rightarrow\; c = a - 6\phantom{X}$(II)
Pitágoras:$\phantom{X}a^2 = b^2 + c^2\phantom{X}$(III)
figura do triângulo retângulo clássico
Substituindo (I) e (II) em (III) temos então:
$\;a^2 = (a - 3)^2 + (a - 6)^2\;\;\Rightarrow\;$
$a^2 - 18a + 45 = 0 \;\; \Rightarrow\;$
$\Rightarrow\;$
$a = 15$
$a = 3$ (inadequado porque $\;b\;\neq\;0\;$)

Substituindo $\;a\;=\;15\;$ em (I) e (II)
$\;b\;=\;12\;$
$\;c\;=\;9\;$
Resposta:
o triângulo procurado tem catetos $9m\;$,$\;12m\;$ e hipotenusa $\;15m\;$

×
Determinar a altura relativa à hipotenusa de um triângulo retângulo cujos catetos valem $\;3\;cm\;\;\;\;$ e $\;\;\;\;4\;cm$.

 



resposta:
Resolução
triângulo retângulo resposta
$\;a^2\;=\;b^2\;+\;c^2\; \Rightarrow \; a^2\;=\;3^2\;+\;4^2\;\Rightarrow\;$
$\;\Rightarrow\;\;a\;=\;5\;$
$\;a\centerdot\;h\;=\;b\centerdot\;c\;$ (relação métrica)$\;\Rightarrow $
$ \Rightarrow \; 5\centerdot h\;=\;3\;\centerdot 4 \; \Rightarrow$
$\;\Rightarrow\;h\;=\;\frac{12}{5}\;cm\; = \; 2,4\;cm$
Resposta: $\,h\,=\,2,4\;cm\,$.
×
Na figura abaixo, o valor de x é:
a)
5
b)
6
c)
7
d)
8
e)
9
triângulo retângulo de cateto 8 e hipotenusa 10

 



resposta: (B)
×
Conforme a figura abaixo, a medida do lado maior $\;x\;$ do retângulo é:
sobre teorema de Pitágoras
a)
5 m
b)
$\sqrt{47}\;$ m
c)
47 m
d)
25 m
e)
12 m

 



resposta: alternativa A
×
Na figura são dadas as medidas de dois lados de um triângulo retângulo. O terceiro lado mede:
a)
3
b)
$\sqrt{41}$
c)
$\sqrt{37}$
d)
4
e)
$\sqrt{34}$
triângulo retângulo de catetos 3 e 5

 



resposta: (E)
×
Um triângulo cujas medidas dos três lados são, respectivamente $\;7, \;8\;$ e $\;13\;$ é:
a) um triângulo retângulo
b) um triângulo acutângulo
c) um triângulo obtusângulo
d) um triângulo equiângulo
e) nenhuma das anteriores

 



resposta: C
×
Os itens a seguir definem medidas de lados de triângulos. Classifique cada triângulo de 1 a 6, associando-os de acordo com o código:
A - um triângulo retângulo
B - um triângulo acutângulo
C - um triângulo obtusângulo
D - um triângulo equiângulo
E - não é triângulo
1.
lados 3, 4 e 5
( )
2.
lados 12, 15 e 16
( )
3.
lados 5, 12 e 13
( )
4.
lados 10, 12 e 14
( )
5.
lados 2, 2 e 3
( )
6.
lados 2, 3 e 5
( )

 



resposta:
1.
lados 3, 4 e 5
(A)
2.
lados 12, 15 e 16
(B)
3.
lados 5, 12 e 13
(A)
4.
lados 10, 12 e 14
(B)
5.
lados 2, 2 e 3
(C)
6.
lados 2, 3 e 5
(E)

×
(PUC - 1973)
Na figura, sabendo-se que:

$\overline{AE}\;=\;30\;$m , $\;\;\overline{BD}\;=\;40\;$m
$\;\overline{AB}\;=\;50\;$m , $\;\;\overline{EC}\;=\;\overline{CD}$

Então, $\;\overline{AC}\;$ e $\;\overline{CB}\;$ valem, respectivamente:
a)
25 m e 25 m
b)
32 m e 18 m
c)
38 m e 12 m
d)
40 m e 10 m
e)
nenhuma das
anteriores
triângulos retângulos EAC e CBD

 



resposta: alternativa B
×
Os lados de um triângulo têm $\;6m,\;9m,\;$ e $\;11m\;$ de comprimento. É triângulo retângulo? Caso seja, que lado é a hipotenusa?

 



resposta: Não é triângulo retângulo: $6^2 + 9^2\;$ < $\; (11)^2\; \Longrightarrow\;117\;$ < $\;121$
×
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por:
a)
$\, \dfrac{2}{3} \pi R^{\large3} \left(\dfrac{m\,-\,1}{m}\right)^{\large 2}\phantom{XXXXXXXX}$
b)
$\, \dfrac{2}{3} \pi R^{\large3} \left(1\,-\,\left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\right)\,$
c)
$\, \dfrac{2}{3} \pi R^{\large3} \left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\;\phantom{XXXXXXX}$
d)
$\,\dfrac{2}{3} \pi R^{\large3} \left(1 \,+\,\left( \dfrac{m\,-\,1}{m}\right)^{\large 2}\right)\,$
e)
nenhuma das alternativas anteriores

 



resposta: Alternativa D
×
(GOIÂNIA) Em um triângulo retângulo $\,ABC\,$ os ângulos $\;\hat{B}\text{ e } \hat{C}\;$ são agudos. Se a hipotenusa mede 3 cm. e $\,\operatorname{sen}C\,=\,{\large \frac{\operatorname{sen}B}{2}}\;$, calcule as medidas dos catetos.

 



resposta: $\,\frac{3 \sqrt{5}}{5}\,\text{cm. e }\,\frac{6\sqrt{5}}{5}\,\text{cm.}$

×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
(FUVEST - 2015) No triângulo retângulo $\;ABC\;$, ilustrado na figura, a hipotenusa $\,\overline{AC}\,$ mede 12 cm e o cateto $\,\overline{BC}\,$ mede 6 cm. Se $\,M\,$ é o ponto médio de $\,\overline{BC}\,$, então a tangente do ângulo $\,\widehat{MAC}\,$ é igual a:
a)
$\,\dfrac{\sqrt{2}}{7}\,$
b)
$\,\dfrac{\sqrt{3}}{7}\,$
c)
$\,\dfrac{2}{7}\,$
d)
$\,\dfrac{2\sqrt{2}}{7}\,$
e)
$\,\dfrac{2\sqrt{3}}{7}\,$
triângulo retângulo ABC

 



resposta: Alternativa B
×
(FATEC - 1979) Se os catetos de um triângulo retângulo T medem, respectivamente, 12 cm e 5 cm, então a altura de T relativa à hipotenusa é:
a)
$\,\dfrac{12}{5}\,$ cm
b)
$\,\dfrac{5}{13}\,$ cm
c)
$\,\dfrac{12}{13}\,$ cm
d)
$\,\dfrac{25}{13}\,$ cm
e)
$\,\dfrac{60}{13}\,$ cm

 



resposta: Alternativa E
×
(PUC SP - 1980) Num triângulo retângulo cujos catetos medem $\,\sqrt{3}\;$ e $\;\sqrt{4}\,$, a hipotenusa mede:
a)
$\,\sqrt{5}\,$
b)
$\,\sqrt{7}\,$
c)
$\,\sqrt{8}\,$
d)
$\,\sqrt{9}\,$
e)
$\,\sqrt{12}\,$

 



resposta: Alternativa B
×
(UF UBERLÂNDIA - 1980) Num triângulo ABC, o ângulo $\,\hat{A}\,$ é reto. A altura $\,h_A\,$ divide a hipotenusa $\;a\;$ em dois segmentos $\,m\,$ e $\,n\;(m\,> \,n)\,$. Sabendo-se que o cateto $\,b\,$ é o dobro do cateto $\,c\,$, podemos afirmar que $\,\dfrac{m}{n}\,$ é igual a:
a)
4
b)
3
c)
2
d)
7/2
e)
5

 



resposta: Alternativa A
×
Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica conforme a figura. A abertura das taças é de 4 cm de raio interno, com profundidade de $\,8\sqrt{2}\,$cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
a)
4
b)
3
c)
2
d)
1
e)
5
taça de vinho

 



resposta:
taça de vinho
Na figura, a pérola de colar esférica de centro O e raio 1 cm encalhada no fundo da taça com formato de cone — raio da base do cone $\;\overline{AB}\,=\,4\,$cm e altura do cone $\;h \,=\,8\sqrt{2}\,$cm. Foi traçada a altura do cone, o segmento $\;\overline{AC}\;$.
Se a esfera está apoiada sobre a face lateral do cone, então a aresta $\;\overline{BC}\;$ é tangente à esfera no ponto $\;P\;$ e o raio $\;\overline{OP}\;$ é perpendicular a $\;\overline{BC}\;$.
Consideremos o ângulo $\;\alpha\;$ no triângulo $\;ABC\;$ reto em $\;\hat{A}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{AB}}{\mbox{cateto adjacente}\,\overline{AC}}\,=$ $\,\dfrac{4}{8\sqrt{2}}\phantom{X}(I)$
Consideremos o mesmo ângulo $\;\alpha\;$ no triângulo $\;POC\;$ reto em $\;\hat{P}\;$.
$\phantom{X}\operatorname{tg}\alpha\,=\,\dfrac{\mbox{cateto oposto}\,\overline{OP}}{\mbox{cateto adjacente}\,\overline{PC}}\,=$ $\,\dfrac{\mbox{raio da esfera }\overline{OP}}{\overline{PC}}\,=\,\dfrac{1}{\overline{PC}}\phantom{X}(II)$
De (I) e (II) decorre que:
$\phantom{X}\dfrac{1}{\overline{PC}}\,=\,\dfrac{4}{8\sqrt{2}}\,$ $\;\Rightarrow\;\overline{PC}\,=\,\dfrac{8\sqrt{2}}{4}\;$ $\Rightarrow\;\overline{PC}\,=\,2\sqrt{2}\,$
Recorrendo ao Teorema de Pitágoras no triângulo $\;POC\;$:
$\,\left\{\begin{array}{rcr} \mbox{cateto}\;\overline{PC}\,=\,2\sqrt{2}\;& \\ \mbox{cateto}\;\overline{OP}\,=\,1\longrightarrow & \mbox{(raio da esfera)}\\ \mbox{hipotenusa}\, \overline{OC}\,=\,d\,+\,1 & \\ \end{array} \right.\,$
$\,(d\,+\,1)^2\,=\,1^2\,+\,(2\sqrt{2})^2\;\Rightarrow\;d\,+\,1\,=\,\sqrt{9}\,$ $\Rightarrow\;d\,=\,3\,-\,1\;\Rightarrow\;\boxed{\,d\,=\,2\,}\,$, que corresponde à
Alternativa C
×
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
paralelepípedo reto retângulo de lados a, b e c traçada a diagonal D

 



resposta:
paralelepípedo reto retângulo com diagonal
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
$\;\left(\overline{BC}\right)^{\large 2}\,=\,a^{\large 2}\,+\,b^{\large 2}\;\Rightarrow\;\overline{BC}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
$\;\left( \overline{FB} \right)^{\large 2}\, + \,\left( \overline{BC} \right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\,\Rightarrow\;$
$\;c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,=\,\left( \overline{FC} \right)^{\large 2}\;\Rightarrow\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(\sqrt{a^{\large 2}\,+\,b^{\large 2}}\right)^{\large 2}\,$
$\;\left( \overline{FC} \right)^{\large 2}\,=\,c^{\large 2}\,+\,\left(a^{\large 2}\,+\,b^{\large 2}\right)\,$
$\;\overline{FC} \,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$Donde concluímos que

A medida da diagonal de um paralelepípedo reto retângulo é igual à raiz quadrada da soma do quadrado de cada uma das suas três dimensões.

$\;\mbox{medida da diagonal}\,=\,\sqrt{a^{\large 2}\,+\,b^{\large 2}\,+\,c^{\large 2}}\,$
×
A geratriz de um cone circular reto mede 10 cm e a altura 8 cm . Determine o raio da base.

 



resposta:
cone indicados geratriz, altura e raio da base

Geratriz do cone é qualquer segmento de reta lateral com uma extremidade no vértice do cone e outra extremidade no perímetro da base do cone.

Como o cone é circular reto, a figura hachurada é um triângulo retângulo onde os catetos são, respectivamente, a altura do cone (8 cm) e o raio da base do cone (r).
A hipotenusa é a geratriz do cone.
$\,G^2\;=\;h^2\;+\;r^2\;\Rightarrow\;$ $\,10^2\,=\,8^2\,+\,r^2\;\Rightarrow\;$ $\,r^2\,=\,100\,-\,64\;\Rightarrow\;$ $r\;=\;6\,cm$
O raio da base mede 6 cm
×
A altura de um cone circular reto é h . A geratriz está inclinada em relação ao plano da base de um ângulo de 60°. Determine o raio da base.

 



resposta:
cone com geratriz formando 60 graus com o plano da base
Observe na figura que (sendo um cone circular reto) a geratriz é a hipotenusa de um triângulo retângulo cujos catetos são a altura e o raio da base.

Considerando-se que a tangente de 60° é igual a $\,\sqrt{\,3\;}\,$ temos:

$\,\operatorname{tg}60^o\,=\,\dfrac{{\text cateto}\;{\text oposto}}{{\text cateto}\;{\text adjacente}}\,=\,\dfrac{\,h\,}{\,r\,}\,\Rightarrow$

$\,\dfrac{\;h\;}{\;r\;}\,=\,\sqrt{\,3\;}\;\Rightarrow\;r\,=\,\dfrac{\;h\;}{\;\sqrt{\,3\;}\;}\,=$ $\,\dfrac{h\sqrt{3}}{3}\,$
O raio da base mede $\,r\,=\,\dfrac{h\sqrt{3}}{3}\,$
×
Sabendo que a área da base de um cone circular reto mede $\;16\pi\,cm^2\;$ e sua geratriz $\;5\,cm\;$, determine a altura do cone.

 



resposta:
cone circular reto com área da base 16 pi cm²
Sendo o cone circular, sua base é um círculo.
Podemos calcular o raio da base:
$\,\require{cancel} S_{\text base}\,=\,\pi\,r^2\,=\,16\,\pi\;\Rightarrow$ $\,r^2\,=\,\dfrac{\,16\,\cancel{\pi}\,}{\cancel{\pi}}\,$
$\,\boxed{\;r = 4\;}\,$
Considerando-se o triângulo retângulo de catetos h e r com hipotenusa 5 cm, temos:
(geratriz)² = (raio)² + (altura)²
$\,4^2\,+\,h^2\,=\,5^2\,\;\Rightarrow$ $\,h^2\,=\,25\,-\,16\;\Rightarrow$ $\,h\,=\,3\,$cm
A altura mede 3 cm
×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Veja exercÍcio sobre:
geometria plana
semelhança de triângulos
triângulo retângulo