Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica conforme a figura. A abertura das taças é de 4 cm de raio interno, com profundidade de $\,8\sqrt{2}\,$cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
a)
4
b)
3
c)
2
d)
1
e)
5
resposta:
Na figura, a pérola de colar esférica de centro O e raio 1 cm encalhada no fundo da taça com formato de cone — raio da base do cone $\;\overline{AB}\,=\,4\,$cm e altura do cone $\;h \,=\,8\sqrt{2}\,$cm. Foi traçada a altura do cone, o segmento $\;\overline{AC}\;$.
Se a esfera está apoiada sobre a face lateral do cone, então a aresta $\;\overline{BC}\;$ é tangente à esfera no ponto $\;P\;$ e o raio $\;\overline{OP}\;$ é perpendicular a $\;\overline{BC}\;$.
Consideremos o ângulo $\;\alpha\;$ no triângulo $\;ABC\;$ reto em $\;\hat{A}\;$.
$\,(d\,+\,1)^2\,=\,1^2\,+\,(2\sqrt{2})^2\;\Rightarrow\;d\,+\,1\,=\,\sqrt{9}\,$ $\Rightarrow\;d\,=\,3\,-\,1\;\Rightarrow\;\boxed{\,d\,=\,2\,}\,$, que corresponde à
1.$\,(a\,+\,b\,+\,c)^2\,=\,a^2\,+\,b^2\,+\,c^2\,+\,2ab\,+\,2bc\,+\,2ac\;\Rightarrow\phantom{XX}$(I) 2.$\,D\,=\,\sqrt{a^2\,+\,b^2\,+\,c^2}\phantom{XX}$(II) 3.$\,A_{\large t}\,=\,2(ab\,+\,bc\,+\,ac)\,=\,2ab\,+\,2bc\,+\,2ac\phantom{XX}$(III) então substituindo em (I) as assertivas (II) e (III) temos que: $\,(a\,+\,b\,+\,c)^2\,=\,A_{\large t}\,+\,D^2\, $
Calcular a medida da diagonal de um paralelepípedo reto retângulo com dimensões a , b e c .
resposta:
Conforme a figura ao lado, o polígono $\,ABCD\,$ é o retângulo de uma das bases do paralelepípedo reto retângulo de medidas $\,a\,,\,b\,$ e $\,c\,$.
Traçada a diagonal da base $\,\overline{BC}\,$ obtém-se o triângulo retângulo $\,BAC\,$, reto no ângulo de vértice $\,A\,$, com catetos de medidas iguais às arestas da base a e b e hipotenusa o segmento $\;\overline{BC}\;$ oposto a $\,\hat{A}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,ABC\,$ temos:
Traçando-se a diagonal do paralelepípedo $\;\overline{FC}\;$ (veja figura) temos o triângulo retângulo $\;CBF\;$, reto em $\,\hat{B}\,$ cujos catetos são $\,\overline{BF}$ de medida igual a $\;c\;$ e $\;\overline{BC}\,$ de medida $\,\sqrt{a^{\large 2}\,+\,b^{\large 2}}\,$.
Aplicando o Teorema de Pitágoras no triângulo $\,FBC\,$ temos a medida da hipotenusa $\,\overline{FC}\,$ que é uma diagonal do paralelepípedo.
O triângulo retângulo $\,OAB\,$ gira em torno do cateto $\,OA\,$, determinando um sólido no espaço. O volume gerado pela região $\,OAM\,$ é igual ao gerado pela região $\,OMB\,$. Então a razão $\,\dfrac{AM}{AB}\,$ será:
a)
$\,\dfrac{1}{2}\,$
b)
$\,\dfrac{1}{3}\,$
c)
$\,\sqrt{2}\,$
d)
$\,2\sqrt{2}\,$
e)
$\,\dfrac{\sqrt{2}}{2}\,$
resposta:
Considerações:
Uma região gerada por um triângulo retângulo girando uma volta completa em torno de um de seus catetos é um cone circular reto chamado de cone de revolução.
Observe atentamente a figura ao lado e verifique que: 1. o triângulo retângulo OAB gira em torno do cateto OA gerando o cone circular representado com superfície verde. 2. o triângulo retângulo OAM interno gira em torno do cateto OA gerando o cone circular interno representado na cor cinza. A reta que contém o segmento OA é chamada eixo de ambos os cones.
Segundo o enunciado: 1. o volume do cone interno cinza gerado pelo triângulo OAM é o mesmo volume que o cone externo gerado pelo triângulo OAB subtraído o volume interno do cone gerado por OAM. Como na figura, o volume do cone externo verde subtraído o cone interno cinza é igual ao volume do cone interno cinza. 2. o examinador deseja a razão $\;\dfrac{\overline{AM}}{\overline{AB}}\,$, que é a razão do cateto inferior de OAM sobre o cateto inferior de OAB: $\;\rightarrow\,\dfrac{\overline{AM}}{\overline{AB}}\;=\;\dfrac{(a)}{(a\,+\,b)}$ Resolução:
Volume gerado pela região OAM é $\,\dfrac{\pi(a)^{\large 2}\centerdot H}{3}\,=\,\dfrac{\pi H(a)^{\large 2}}{3}\;\;$(I) Volume gerado pela região OMB é :(volume do cone gerado OAB) subtraído (volume gerado por OAM): $\,\dfrac{\pi(\overline{AB})^{\large 2}\centerdot H}{3}\, - \,\dfrac{\pi(\overline{AM})^{\large 2}\centerdot H}{3}\phantom{X}=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (\overline{AB})^{\large 2}\,-\,(\overline{AM})^{\large 2} \right)\;\;=\phantom{X}$ $\,\dfrac{\pi}{3}\centerdot H \left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)\;\;$(II)
Conforme o enunciado, igualando (I) e (II) temos: $\,\require{cancel} \cancel{\dfrac{\pi H}{3}}(a)^{\large 2}\, = \,\cancel{\dfrac{\pi H}{3}}\left( (a + b)^{\large 2}\,-\,(a)^{\large 2} \right)$
A geratriz de um cone circular reto mede 10 cme a altura 8 cm. Determine o raio da base.
resposta:
Geratriz do cone é qualquer segmento de reta lateral com uma extremidade no vértice do cone e outra extremidade no perímetro da base do cone.
Como o cone é circular reto, a figura hachurada é um triângulo retângulo onde os catetos são, respectivamente, a altura do cone (8 cm) e o raio da base do cone (r). A hipotenusa é a geratriz do cone. $\,G^2\;=\;h^2\;+\;r^2\;\Rightarrow\;$ $\,10^2\,=\,8^2\,+\,r^2\;\Rightarrow\;$ $\,r^2\,=\,100\,-\,64\;\Rightarrow\;$ $r\;=\;6\,cm$
Sabendo que a área da base de um cone circular reto mede $\;16\pi\,cm^2\;$ e sua geratriz $\;5\,cm\;$, determine a altura do cone.
resposta:
Sendo o cone circular, sua base é um círculo. Podemos calcular o raio da base: $\,\require{cancel} S_{\text base}\,=\,\pi\,r^2\,=\,16\,\pi\;\Rightarrow$ $\,r^2\,=\,\dfrac{\,16\,\cancel{\pi}\,}{\cancel{\pi}}\,$ $\,\boxed{\;r = 4\;}\,$ Considerando-se o triângulo retângulo de catetos h e r com hipotenusa 5 cm, temos: (geratriz)² = (raio)² + (altura)² $\,4^2\,+\,h^2\,=\,5^2\,\;\Rightarrow$ $\,h^2\,=\,25\,-\,16\;\Rightarrow$ $\,h\,=\,3\,$cm
O ângulo do vértice da secção meridiana de um cone circular reto mede 60°e a área desta secção mede $\;4\sqrt{3}\,cm^2\;$. Determine o raio da base e a altura do cone.
resposta: $\,R\,=\,2\,cm\;$ e $\;H\,=\,2\sqrt{3}\,cm\;$ ×
A altura de um cone circular reto mede 8 cm e sua geratriz 10 cm. Determine a área total do cone.
Determine a área total e o volume de um cone equilátero em função da geratriz.
resposta: $\,S_T\,=\,\dfrac{3\pi g^{\large 2}}{4}\;$ e $\;V\,=\,\dfrac{\pi g^{\large 3}\,\sqrt{3}}{24}\;$ ×
(MAUÁ) Seja um cone circular reto, tal que uma secção pelo seu eixo resulte num triângulo equilátero de lado 2a. Calcule a área total da superfície do cone.
Sabendo que um cone circular reto tem altura 24 cm e raio da base 8 cm , determine a que distância do vértice ele deve ser interceptado por um plano paralelo ao plano da base de forma que que a área da secção obtida seja $\;25 \pi\;$cm² .
O volume de um cilindro circular reto é 640π cm³ e a altura é 10 m . Calcular o volume do cone circular reto, cuja base é equivalente à do cilindro e a geratriz igual à do cilindro.
A área lateral de um cone de revolução é o dobro da área da base. Calcule o volume do cone, sabendo que ele é equivalente a um cilindro de 1 m de altura e que tem por base um círculo de raio igual à altura do cone.
A base de um triângulo isósceles mede 6 m e os lados côngruos medem 5 m cada. Calcule o volume do sólido gerado pela rotação de um ângulo de 40° desse triângulo em torno de um de seus lados côngruos.
Calcular a altura de um cilindro circular reto inscrito num cone circular reto de raio 9 cme geratriz 16 cm, de modo que a área lateral do cone que está acima do cilindro seja igual à área da coroa circular determinada pelas bases do cilindro e do cone.
(FEI) Um triângulo retângulo de catetosb e c, com b > c, quando gira em torno desses lados gera dois sólidos de volumesVb e Vc, respectivamente. Determine qual o maior volume, justificando a resposta.
(ENE) Na base de um cone, cujo volume é igual a $\;144\,\pi\;$ m³ , está inscrito um hexágono regular de área $\;54\sqrt{3}\;$m² . A área total desse cone é:
(MAUÁ) Um cone circular reto de altura h = 3tem área lateral igual a $\;6\,\pi\;$m³. Determinar o ângulo que a geratriz gfaz com a reta suporte da altura h .
(PUC) A medida dos lados de um triângulo equilátero $\;ABC\;$ é $\;a\;$ . O triângulo $\;ABC\;$ gira em torno de uma reta $\;r\;$ do plano do triângulo, paralela ao lado $\;\overline{BC}\;$ e passando pelo vértice $\;A\;$. O volume do sólido gerado por esse triângulo vale:
Um prisma triangular regular tem as arestas da base medindo 5 cm e aresta lateral igual a 7 cm . Calcular a área da base, a área lateral, a área total e o volume.