Lista de exercícios do ensino médio para impressão
(MACKENZIE - 1977) O gráfico abaixo pode ser da função:
gráfico de um menos seno de x

a)
$|senx|$
b)
$sen^2x$
c)
$1-|senx|$
d)
$1-|cosx|$
e)
não sei.


 



resposta: Alternativa C
×
(CESCEM - 1975) A função que melhor se adapta ao gráfico abaixo é:
a)
$y = sen(\dfrac{x}{2})$
b)
$y = cos(\dfrac{x}{2})$
c)
$y = sen{2x}$
d)
$y = cos{2x}$
e)
$y = sen{x}$
gráfico de função

 



resposta: Alternativa A
×
(UFGO) Simplificando a expressão $\,\dfrac{\operatorname{tg}a\,+\,\operatorname{tg}b}{\operatorname{cotg}a\,+\,\operatorname{cotg}b}\,$, obtém-se:
a)
$\,\operatorname{tg}a \centerdot \operatorname{tg}b\,$
b)
$\,\operatorname{cotg}a \centerdot \operatorname{cotg}b\,$
c)
$\,\operatorname{tg}(a\,+\,b)\,$
d)
$\,\operatorname{cotag}(a\,+\,b)\,$
e)
$\,\operatorname{tg}a \centerdot \operatorname{cotg}b\,$

 



resposta: Alternativa A
×
(ITA - 2004) Considerando as funções

$\phantom{XX} \operatorname{arc\,sen:}[-1, +1] \rightarrow [ - \pi / 2, \pi / 2 ]\phantom{XX}$ e $\phantom{XXX} \operatorname{arc\,cos:} [-1, + 1] \rightarrow [0, \pi[\phantom{XX}$ ,

assinale o valor de $\phantom{X}cos(\operatorname{arc\,sen} \dfrac{3}{5} + \operatorname{arc\,cos} \dfrac{4}{5})\phantom{X}$.

a)
$\;\dfrac{6}{25}\;$
b)
$\;\dfrac{7}{25}\;$
c)
$\;\dfrac{1}{3}\;$
d)
$\;\dfrac{2}{5}\;$
e)
$\;\dfrac{5}{12}\;$

 



resposta: Alternativa B
×
Calcular o lado $\;a\;$ de um triângulo $\;ABC\;$ sabendo-se que $\;\hat{B}\,=\,60^o\,\text{, } \hat{C}\,=\,45^o \;\text{ e }\; \overline{AB}\,=\, 2\text{ m}$.
triângulo ABC com 60 e 45 graus

 



resposta: Resolução:
$\,\triangle ADB \left\{ \operatorname{sen}60^o \,=\,{\large \frac{h}{2}}\; \Rightarrow \;h\,=\,\sqrt{3} \text{m.}\right.\,$
Então $\,BD^2 + (\sqrt{3})^2\,=\,2^2 \;\Rightarrow\;BD\,=\,1\text{m.}\,$
$\,\triangle ADC \left\{ \operatorname{tg}45^o \,=\,{\large \frac{\sqrt{3}}{CD}} \; \Rightarrow \; CD = \sqrt{3} \text{m.} \right.\,$
Logo: $\,a\,=\,BD\,+\,CD \;\Rightarrow\;$
$\boxed{\;a\,=\,(1\,+\,\sqrt{3})\text{ m.}\;}\,$
×
(FMU - FIAM) O valor de $\,\operatorname{sen}x \,+\,{\large \frac{\operatorname{sen}^3 x}{2}} \,+ \, {\large \frac{\operatorname{sen}^5 x}{4}} \,+\,...\;$ é:
a)
$\,\dfrac{\operatorname{sen}x}{1\,+\,\operatorname{sen^2}x}\,$
b)
$\,\dfrac{\operatorname{cos}x}{1\,-\,\operatorname{sen^2}x}\,$
c)
$\,\dfrac{\operatorname{sen}x}{1\,+\,\operatorname{cos^2}x}\,$
d)
$\,\dfrac{\operatorname{sen}x}{1\,-\,\operatorname{sen^2}x}\,$
e)
$\,\dfrac{2\operatorname{sen}x}{1\,+\,\operatorname{cos^2}x}\,$

 



resposta: (E)
×
(VUNESP) Se $\;x \,\text{, }\;y\;$ são números reais tais que:
$\,y\,=\, \dfrac{ \operatorname{cos^3}x \,-\, 2 \, \centerdot \,\operatorname{cos}x \,+\, \operatorname{sec}x }{ \operatorname{cos}x \, \centerdot \,\operatorname{sen^2}x } \;$, então:
a)
$\,y\,=\,\operatorname{sec^2}x\,$
b)
$\,y\,=\,\operatorname{tg^2}x\,$
c)
$\,y\,=\,\operatorname{cos^2}x\,$
d)
$\,y\,=\,\operatorname{cossec^2}x\,$
e)
$\,y\,=\,\operatorname{sen^2}x\,$

 



resposta: (B)
×
(VUNESP) Sejam $\;A\;$, $B$ e $C \;$ conjuntos de números reais. Sejam $\;f\,:\, A \rightarrow B \;$ e $\;g\,:\, B \rightarrow C \;$ definidas, respectivamente, por:
$\left\{\begin{array}{rcr} \,f(x)\, &=\,\operatorname{sen}x \text { , } \vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{ , }\,x \,\in\, \, A\,\; \phantom{XX} \\ \,g(x)\,&=\,{\Large \frac{1}{1\,-\,x^2}} - 1 \text{ , }\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{ , }\,x \,\in\, \, B \\ \end{array} \right.\,$
Se existe $\;f\,:\, A \rightarrow C \;$, definida por $\,h(x)\,=\,g{\large [f(x)]} \text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{, }\,x \,\in\, \, A\;$, então:
a)
$\,h(x)\,=\,\operatorname{cos}x\,$
b)
$\,h(x)\,=\,\operatorname{cos^2}x\,$
c)
$\,h(x)\,=\,\operatorname{tg^2}x\,$
d)
$\,h(x)\,=\,\operatorname{sen^2}x\,$
e)
$\,h(x)\,=\,\operatorname{sec^2}x\,$
 
 

 



resposta: (C)
×
Na figura, calcular $\,h\;$ e $\,d\,$.
triângulo retângulo 30 60 graus

 



resposta: Resolução:
$\,\triangle BCD \left\{ \operatorname{tg}60^o \,=\,{\large \frac{h}{d}} \; \Rightarrow \; h\,=\,d\sqrt{3} \right.\,$
$\,\triangle ACD \left\{ \operatorname{tg}30^o \,=\,{\large \frac{h}{d\,+\,40}} \; \Rightarrow \; h\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \right.\,$
Então $\,d\sqrt{3}\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \,\Rightarrow\; d\,=\,20\,m$
e portanto $\;h\,=\,20\sqrt{3}\,m\,$

Resposta: $\; \boxed{ d\,=\,20\,m}\;\;\boxed{h\,=\,20\sqrt{3}\,m}$
×
Sabendo-se que $\;\hat{x}\;$ é um ângulo agudo e que $\;\operatorname{tg}\hat{x}\,=\,{\large \frac{5}{12}}\;$, calcule o $\,\operatorname{sen}\hat{x}\,$

 



resposta: Resolução:
$\,\operatorname{sen^2}x \,=\,{\large \frac{\operatorname{tg^2}x}{1\,+\,\operatorname{tg^2}x}}\; \Rightarrow \operatorname{sen^2}x \,=\,{\large \frac{\frac{25}{144}}{1\,+\,\frac{25}{144}}} \,=\,\frac{25}{169}$
Então $\,\boxed{\operatorname{sen}x\,=\,\frac{5}{13}}\;\text{ (para x agudo) }$
×
Calcular $\,y\,=\,{\Large \frac{\operatorname{cos}x\,-\,\operatorname{sec}x}{\operatorname{sen}x\,-\,\operatorname{cossec}x}}\;$, sabendo que $\,\operatorname{tg}x\,=\,3\;$.

 



resposta: Resolução:
$\,y\,=\, {\large \frac{\operatorname{cos}x\,-\,\frac{1}{\operatorname{cos}x}}{\operatorname{sen}x\,-\,\frac{1}{\operatorname{sen}x } }}\,=\, {\Large \frac{ \frac{ \operatorname{cos^2}x\,-\,1}{\operatorname{cos}x}}{\frac{\operatorname{sen^2}\,-\,1}{\operatorname{sen}x}} }\,=\,$ $ {\Large \frac{ - \frac{\operatorname{sen^2}x}{\operatorname{cos}x} } {- \frac{\operatorname{cos^2}x }{\operatorname{sen}x } } } \,=\,$ $ {\Large \frac{\operatorname{sen^3}x }{\operatorname{cos^3}x} \,=\,\operatorname{tg^3}x}$
Então $\,\boxed{y\,=\,3^3\,=\,27}\,$
×
Simplificar a expressão: $\,y\,=\,{\large \frac{\operatorname{cos^3}a \,-\,\operatorname{sen^3}a}{1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a } }\;$.

 



resposta: Resolução:
$\,y\,=\,{\large \frac{(\operatorname{cos}a - \operatorname{sen}a)(\operatorname{cos^2}a\,+\,\operatorname{cos}a \;\centerdot\; \operatorname{sen}a\,+\operatorname{sen^2}a)}{(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)} } \,=\,$
$\,=\,{\large \frac{(\operatorname{cos}a\,-\,\operatorname{sen}a)(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)}{(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)}}\,=\,\boxed{\operatorname{cos}a\,-\,\operatorname{sen}a}$

×
(PUC) Qual é o valor de$\phantom{X}{\large x}\phantom{X}$na figura ao lado?
a)
${\large\frac{\sqrt{2}}{3}}$
b)
${\large\frac{5\sqrt{3}}{3}}$
c)
${\large\frac{10\sqrt{3}}{3}}$
d)
${\large\frac{15\sqrt{3}}{4}}$
e)
${\large\frac{20\sqrt{3}}{3}}$
triângulo com 30 e 60 graus

 



resposta: (E)
×
(UNESP) Dadas as funções trigonométricas $\,f(x)\,=\,\operatorname{sen}x\,$ e $\,g(x)\,=\,\operatorname{sen}(2x)\,$, os valores de $\;x \mbox{, }\,0\,\leqslant\,x\,\leqslant\,\pi\,$, para os quais há intersecção entre os gráficos de $\,f(x)\,$ e $\,g(x)\,$ são:

a)
$\,\dfrac{\pi}{2}\,$ e $\,\dfrac{\pi}{4}\,$
b)
$\,0\,$, $\,\dfrac{\pi}{3}\,$ e $\,\pi\,$
c)
$\,0\,$ e $\,\dfrac{\pi}{4}\,$
d)
$\,0\,$, $\dfrac{\pi}{2}\,$ e $\,\dfrac{\pi}{4}\,$
e)
$\,\dfrac{\pi}{6}\,$ e $\,\pi\,$

 



resposta: (B)
×
(FUVEST - 2002) Determine as soluções da equação$\phantom{X}(2\operatorname{cos^2}\,x\;+\;3\operatorname{sen}\,x)(\operatorname{cos^2}\,x\;-\;\operatorname{sen^2}\,x)\,=\,0\phantom{X}$que estão no intervalo $\phantom{X}\left[0, 2\pi\right]\phantom{X}$

 



resposta: $\,\lbrace\,\frac{\,\pi\,}{4}\,,\,\frac{\,3\pi\,}{4},\,\frac{\,5\pi\,}{4},\,\frac{\,7\pi\,}{4},\,\frac{\,7\pi\,}{6},\,\frac{\,11\pi\,}{6}\,\rbrace\,$
×
Veja exercÍcio sobre:
trigonometria
funções trigonométricas
função seno