Determine o vértice e o conjunto imagem da função $\;f\;\text{ de }\,\mathbb{R}\,\text{ em } \,\mathbb{R}\;$ definida por $\;f(x)\,=\,2x^2 \,-\,12x\,+\,10\;$.
resposta: Vértice: $\,V\,=\,(3;\,-8)\;$ Conjunto Imagem: $\;Im(f)\,=\,[-8;\,+\infty[ \;$ ou $\;Im(f)\,=\,\lbrace \,y\in \mathbb{R} \mid \; y \geqslant -8 \,\rbrace$ ×
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.
(PUC) Seja $\;x\;$ elemento de $\;\mathbb{A}\;$. Se $\;x\,\notin \;]{\small -1};\,2]\,\text{, }\; x < 0\;$ ou $\; x \geqslant 3\,$, determine $\;\mathbb{A}\,$.
Na figura, as curvas tracejada e cheia são os gráficos das funções $\,f\,$ e $\,g\,$, respectivamente. São feitas as afirmações a seguir de (I) a (V): Os únicos valores de $\,x \, \in \; [{\small -3};\,5]\;$ tais que:
I)
$\,f(x)\,=\,0\;$ são $\; x\,=\,-2\;$ ou $\;x\,=\,3\,$
Na figura, as curvas tracejada e cheia são os gráficos das funções $\,f\,$ e $\,g\,$, respectivamente. São feitas as afirmações a seguir de (I) a (V): Os únicos valores de $\,x \, \in \; [{\small -3};\,5]\;$ tais que:
I)
$\,g(x)\,=\,0\;$ são $\; x\,=\,-2\;$ ou $\;x\,=\,1\;$ ou $\;x\,=\,4$
(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
(FAAP) Na figura, enquanto $\,x\,$ varia de 0 a $\,\beta\,$, os pontos $\;P_1\;$ e $\;P_2\;$ percorrem arcos nas parábolas $\,y\,=\,x^2\,-\,4x \;\;$ e $\;\;-x^2\,+\,16x\;$.
Pede-se:
a)
o valor de $\,\beta\,$
b)
a maior distância entre $\,P_1\,$ e $\,P_2\,$.
resposta: a)$\,\beta\,=\,10\,$b) maior distância : $\,d_{P1-P2} \,=\,50\,$ ×
(VUNESP) Em uma partida de futebol a trajetória da bola, ao ser batida uma falta do jogo, é tal que a sua altura $\,h\,$, em metros, varia com o tempo $\,t\,$, em segundos, de acordo com a equação: $\phantom{X}h\,=\,-t^2\,+\,10t \phantom{XXX}(0\,\leqslant \,t \,\leqslant 10)$ Então a alternativa correta é:
a)
a altura máxima atingida pela bola é de 25 m.
b)
a distância do local da falta até o local onde a bola atinge o solo é de 20 m.
c)
o valor de $\,t\,$ para o qual a bola atinge a sua altaura máxima é maior do que 5 segundos.
d)
a bola, nesse intervalo de tempo, atinge 3 vezes o solo.
(SANTA CASA - 1982) As dimensões de um retângulo são numericamente iguais às coordenadas do vértice da parábola de equação $\;y\,=\,-128x^2\,+\,32x\,+\,6\;$. A área do retângulo é:
(MACKENZIE - 1982) Seja $\;ax^2\,+\,bx\,+\,c\,=\,0\;$ uma equação de coeficientes reais não nulos, com $\,a\,$ e $\,c\,$ de sinais contrários. Então, podemos afirmar que, certamente:
(FAC OBJETIVO - 1982) Seja $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ uma função definida por $\;f(x)\,=\,{\large \sqrt{x^2\,+\,x\,+\,k}}\;$, sendo $\,k\,$ um número real. Um valor possível para $\,k\,$ é:
(SANTA CASA - 1982) A função quadrática $\,f\,$, definida por $\;f(x)\,=\,(m\,-\,1)x^2\,+\,2mx\,+\,3m\;$, assume somente valores estritamente positivos, para todo $\;x \in \mathbb{R}\;$ se, e somente se,
(MED JUNDIAÍ - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$, definida por $\;f(x)\,=\,-x^2\,+\,ax\,+\,b\;$. Se os pontos (1 ; 3) e (0 ; 1) pertencem ao gráfico de $\,f\;$, um outro ponto do gráfico é:
(FGV - 1982) Para que a equação $\phantom{X}(a\,-\,2) \centerdot x^2 \,+\,ax\,+\,a\,-\,1\,=\,0\phantom{X}$ apresente duas raízes reais e distintas, a condição é:
a)
$\,a < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\,$
b)
$\,a > 2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$
c)
$\,a\,\neq\,2\,$
d)
$\,2(1\,-\,{\large \frac{\sqrt{3}}{3}}) < \,a\, < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\;$ e $\;a\,\neq \,2$
e)
$\,a\, < \,2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$ ou $\,a\, >\,2(1\,+\,{\large \frac{\sqrt{3}}{3}})$
(UFGO - 1982) Se possível, determine em $\,\mathbb{R}\,$ o conjunto solução da inequação $\,(x^2\,-\,2x\,-\,15)\centerdot (-x^2\,-\,2)\centerdot (1\,-\,x^2)\, \leqslant\,0$
(MACKENZIE) Em $\,\phantom{X} y\,=\,ax^2\,+\,bx\,+\,c\;,\;(a\,\neq \, 0) \phantom{X}\,$, com $\,a\,$, $\,b\;$ e $\;c\,$ reais, tem-se $\,y\,$ máximo para $\,x\,=\,2\,$. Então:
( I )
$\,{\large \frac{b}{a}}\,=\,-4\;$ e $\;a > 0\,$
( II )
$\,| {\large \frac{b}{a}} | \,=\,4\;$ e $\;a\,$ qualquer
(FAAP) Seja $\phantom{X} f\,:\,[-3\,;\,0] \rightarrow \mathbb{R}\phantom{X}$ a função tal que $\phantom{X} f(x)\,=\,(x\,+\,1)(x\,+\,3) \phantom{X}$. O conjunto imagem de $\;f\;$ é: