Leia o trecho abaixo e indique a função sintática das palavras grifadas. " Como é solene e grave, no meio das nossas matas, a horamisteriosa do crepúsculo, em que a natureza se ajoelha aos pés do criador, para murmurar a preceda noite." (J. de Alencar. O Guarani.) As funções sintáticas das palavras sublinhadas são, respectivamente:
a)
predicativo do sujeito, adjunto adverbial de lugar, núcleo do sujeito, adjunto adnominal, sujeito, adjunto adverbial de lugar, objeto direto e adjunto adnominal.
b)
adjunto adnominal, predicativo do sujeito, objeto direto, sujeito, agente da passiva, adjunto adverbial de lugar, sujeito e adjunto adnominal.
c)
sujeito, sujeito, adjunto adverbial de lugar, predicativo do sujeito, objeto direto, objeto indireto, complemento nominal e sujeito.
d)
objeto direto, agente da passiva, sujeito, objeto indireto, complemento nominal, sujeito, adjunto adverbial de lugar e sujeito.
e)
agente da passiva, adjunto adnominal, sujeito, sujeito, predicativo do sujeito, complemento nominal, objeto direto e objeto indireto.
(ITA - 2004) Considere a função $\;f : {\rm I\!R} \rightarrow \mathbb{C}$, $f(x) = 2\;cosx + 2\;i\;senx$. Então, $\;\forall \; x, y \; \in \; {\rm I\!R}\;$, o valor do produto $\;f(x)f(y)\;$ é igual a:
(ITA - 2004) Sejam as funções $\;f\;$ e $\;g\;$ definidas em $\;{\rm I\!R}\;$ por $\;f(x) = x^2 + \alpha x\; $ e $\;g(x) = -(x^2 + \beta x)\;$, em que $\alpha$ e $\beta$ são números reais. Considere que estas funções são tais que
$f$
$g$
Valor mínimo
Ponto de mínimo
Valor máximo
Ponto de máximo
$-1$
$< 0$
$\frac{9}{4}$
$> 0$
Então a soma de todos os valores de $\;x\;$ para os quais $\;(f \circ g)(x) = 0\;$ é igual a:
Calcular o lado $\;a\;$ de um triângulo $\;ABC\;$ sabendo-se que $\;\hat{B}\,=\,60^o\,\text{, } \hat{C}\,=\,45^o \;\text{ e }\; \overline{AB}\,=\, 2\text{ m}$.
Dados $\,A\,=\,\lbrace \, 2, 3, 4 \,\rbrace\,$ e $\, B\,=\,\lbrace \, 3, 4, 5, 6\,\rbrace\,$, seja $\,f\,$ a Relação Binária de $\,A\,$ em $\,B\,$ tal que $\,f\,=\,\lbrace \, (x; y)\,\in \,A \times B \,\mid x\;$divide$\; y \,\rbrace\,$ Então:
(PUCC) São dados os conjuntos $\,A\,=\,\lbrace \, 3, 5, 6 \,\rbrace\,$ e $\,B\,=\,\lbrace \,4, 5, 9, 10, 12 \,\rbrace\,$ e a relação $\,R\,=\,\lbrace \,(x;y)\, \in \,A \times B\,\mid\,$ m.d.c$(x;y)\,=\,1 \,\rbrace\,$ O número de elementos da relação inversa de $\;R\;$ é:
Com base nas definições, resolver a equação: $(x,\, y)\centerdot(1, \,2) \, + \, (2,\, 3)\,=\,(4, \, 5)$
resposta: $\,x\,=\,\frac{6}{5}\,$ e $\,y\,=\,- \frac{2}{5}$ ou $(\frac{6}{5};-\frac{2}{5})$ ×
Se $\,A\,$ é um conjunto tal que $\,n(A \times A)\,=\,9\;$ e que $\,\lbrace \, (2;4), (4;5)\,\rbrace\, \subset \,A \times A\,$, determinar $\,A \times A\,$.
(PUCC) Sejam $\,M\,=\,\lbrace \,x\in \mathbb{R}\;\mid\; 0 \, \leqslant \, x \, \leqslant 5 \,\rbrace\,$ e $\,P\,=\,\lbrace \,x\in \mathbb{R}\;\mid\; 3 \, \leqslant \, x \, \leqslant 7 \,\rbrace\,$. O conjunto $\,(M\,-\,P)\,\times\,(P\,-\,M)\,$ é representado pela região:
(PUCC - 1982) Dados os conjuntos $A\,=\,\lbrace \,3,\, 4,\, 6 \,\rbrace\,$, $\;B\,=\,\lbrace \,1,\, 2\,\rbrace\,$ e $\,C\,=\,\lbrace \,3,\, 6,\, 9,\,12 \,\rbrace\,$, determine o conjunto $\,(C\,-\,A)\, \times\,B\,$.
(PUCC - 1982) Dados os conjuntos $\;A\,=\,\lbrace \,x\,\in\,\mathbb{R}\;\mid\;1\,\leqslant\,x\,\leqslant\,3 \,\rbrace\;$ e $\;B\,=\,\lbrace \,x\,\in\,\mathbb{R}\;\mid\;-1\,\leqslant\,x\,\leqslant\,1\,\rbrace\;$ represente, graficamente, o produto cartesiano $\,B\, \times\,A\,$.
(OSEC) Seja $\,f\,$ a função tal que $\,f(x)\,=$ $\,x^3\,-\,8\,+\,(x^2\,+\,2x\,+\,4) \centerdot (2\,-\,x)\,$ O conjunto de todas as soluções da equação $\,f(x)\,=\,0\,$ é:
(FUVEST) As funções $\,f\,$ e $\,g\,$ são dadas por: $\left \{ \begin{array} {rcr} f(x)\,=\,{\large \frac{3}{5}}x - 1 \\ g(x)\,=\,{\large \frac{4}{3}}x + a \\ \end{array}\right.$ Sabe-se que $\;f(0)\,-\,g(0) = {\large \frac{1}{3}}\,$. O valor de $\;f(3)\,-\,3 \centerdot g({\large \frac{1}{5}})\;$ é:
(FEI) Seja $\,f\,:\, \mathbb{R} \rightarrow \mathbb{R}\,$ a função tal que: $\,f(x)\,=\, x^2\,+\,bx\,+\,c\,$ Calcule $\,b \centerdot c\;$ sabendo-se que $\,f(-1)\,=\, 1\;$ e $\,f(1)\,=\, \alpha\,$.
resposta: $ b \centerdot c \,=\, (\frac{\alpha - 1}{2})^2\,$
(FAAP) Dada a função $\,f(x)\,=\, 2x^2 \, + \, 1\,$, se $\,\Delta f \,=\, f(x)\,-\,f(3)\,$, expressar $\,\Delta f\,$ somente em termos de $\,\Delta x\,$, sendo $\,\Delta x \,=\, x\,-\,3\,$.
(UEMT) O domínio e o contradomínio de uma função $\,f\,$ são subconjuntos de $\,\mathbb{R}\,$. Sendo $\,f\,$ dada por $\,f(x)\,=\, {\large \dfrac{1}{\sqrt{x - x^2}}}\,$ o dominio de $\,f\,$ pode ser:
(MACKENZIE) Se $\,f\,$ é tal que $\,f(x\,+\,1) = {\dfrac{\;3x\,+\,5\;}{\;2x\,+\,1\;}},\,x\,\neq\,\dfrac{\;-1\;}{\;2\;}\,$, então o domínio de $\,f\,$ é:
(MAUÁ) Seja $\,f\,:\, \mathbb{R} \rightarrow \mathbb{R}\,$ a função tal que $\,f(x)\,=\,x^2\,$. Seja $\,g\,:\, \mathbb{R} \rightarrow \mathbb{R}\,$ a função tal que $\,g(x)\,=\,{\large \frac{f(x \,+\, h) \,- \,f(x)}{h} }\,$. Assim, $\,g(x)\,$ é igual a:
(PUC) Seja $\,D\,=\,\lbrace \, 1, \,2, \,3, \,4, \,5 \,\rbrace\,$, e $\,f\,:\, D \rightarrow \mathbb{R}\;$ a função definida por $\,f(x)\,=\,(x\,-\,2)\centerdot(x\,-\,4)\,$. Então:
a)
$f\,$ é sobrejetora
b)
$f\,$ é injetora
c)
$f\,$ é bijetora
d)
O conjunto imagem de $\,f\,$ possui 3 elementos somente
(STA MARIA - MANAUS) O número de funções injetoras definidas em $\,A\,=\,\lbrace \,1, 2 \,\rbrace\,$ com valores em $\,B\,=\,\lbrace \,0,\,1,\,2,\,3\,\rbrace\;$ é:
(USP) Dizemos que uma função real é par se $\,f(x)\,=\,f(-x)\,$ e que é ímpar se $\,f(x)\,=\,-f(-x)\,$. Das afirmativas que seguem indique qual a falsa:
a)
O produto de duas funções ímpares é uma função ímpar.
b)
O produto de duas funções pares é uma função par.
c)
A soma de duas funções ímpares é uma função ímpar.
Logo $ \left\{\begin{array}{rcr} &g \circ h : \, \mathbb{R} \rightarrow \mathbb{R}\; \phantom{XXXXX} \\ &(g \circ h)(x)\,=\,x^2\,-\,3x\,+\,3 \\ \end{array} \right.$
É muito importante notar que $\; \left\{\begin{array}{rcr} g \circ f & \neq & f \circ g \\ h \circ f & \neq & f \circ h \\ h \circ g & \neq &g \circ h \\ \end{array} \right.$
Seja $\,f\,:\, \mathbb{R}_+ \rightarrow \mathbb{R}_+\;$ a função definida por $\,f(x)\,=\,x^2\;$. Determine uma função $\,g\,:\, \mathbb{R}_+ \rightarrow \mathbb{R}_+\;$ tal que a função composta $\;(f \circ g)\;$ seja uma função identidade.
(ITA) Supondo $\,a < b\;$, onde $\;a\;$ e $\;b\;$ são constantes reais, considere a função $\,H(x)\,=\,(b\,-\,a)x\,+\,a\,$ definida em $\,[0; 1]\,$. Podemos assegurar que:
a)
$\,H\,$ não é uma função injetora.
b)
Dado $\,y_0 < b\,$, sempre existe $\,x_0\,$ em $\,[0; 1]\,$, tal que $\,H({\large x_0})\,=\,y_0\,$
c)
Para cada $\,y_0\,$, com $\,a < y_0 < b\,$, corresponde um único $\,x_0\,$ em $\,[0; 1]\,$ tal que $\,H({\large x_0})\,=\,y_0\,$
d)
Não existe uma função real $\,G\,$, definida em $\,[a; b]\,$ tal que $\;(G \circ H)(x)\,=\,x\;$ para cada $\,x\,$ em $\,[0; 1]\,$
e)
$\,H\,:\,[0; 1] \rightarrow [a; b]\,$ não é sobrejetora.
(FUVEST) Se $\;f\,:\, {\rm I\!R}\; \rightarrow \; {\rm I\!R} \;$ é da forma $\,f(x)\,=\,ax\,+\,b\;$ e verifica $\,(f \circ f)(x)\,=\,x\,+\,1\;$, para todo $\,x\,$ real, então $\,a\,$ e $\,b\,$ valem, respectivamente:
(UBERLÂNDIA) Se $\,f(x\,-\,2)\,=\,2x^2\;, \vee \negthickspace \negthickspace \negthickspace \negthinspace - x \,\in\, \, \mathbb{R}\,$, então $\,f(x\,+\,2)\,$ é igual a:
(VUNESP) Sejam $\;A\;$, $B$ e $C \;$ conjuntos de números reais. Sejam $\;f\,:\, A \rightarrow B \;$ e $\;g\,:\, B \rightarrow C \;$ definidas, respectivamente, por:
Se existe $\;f\,:\, A \rightarrow C \;$, definida por $\,h(x)\,=\,g{\large [f(x)]} \text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{, }\,x \,\in\, \, A\;$, então:
(MACKENZIE) A função $\,f\,$ definida em $\,\mathbb{R}- \lbrace 2 \rbrace\,$ por $\;f(x)\,= \large{\,\frac{2\,+\,x}{2\,-\,x}\,}\;$ é inversível. O seu contradomínio é $\,\mathbb{R} \,-\,\lbrace a \rbrace\;$. O valor de $\;a\;$ é:
(STA CASA - 1982) Diz-se que uma funçao $\,f\,$ é ímpar se, para todo x de seu domínio, tem-se que $\;f(-x)\,=\,-\,f(x)\;$. Se as funções seguintes são tais que $\;f\,:\,A \subset \mathbb{R} \rightarrow \mathbb{R} \;$, qual delas pode ser ímpar?
(MACKENZIE) Uma funcão $\,f\,$ é definida em $\,A\,$ e tem imagem em $\,B\,$. Sabe-se que o conjunto $\,A\,$ tem 2K - 2 elementos e o conjunto $\,B\,$ tem K + 3 elementos. Se $\,f\,$ é injetora, então:
(MACKENZIE - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ definida por $\;f(x)\,=\,3\;$. Então $\;g\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ definida por
$\;g(x)\,=\,$$ \; \underbrace{f(x)\centerdot f(x)\centerdot f(x)\centerdot f(x)\, ...\, f(x)}_{\large n \, fatores \, iguais \, a \,f(x)}\;$
Sabendo-se que $\;\hat{x}\;$ é um ângulo agudo e que $\;\operatorname{tg}\hat{x}\,=\,{\large \frac{5}{12}}\;$, calcule o $\,\operatorname{sen}\hat{x}\,$
resposta: Resolução: $\,\operatorname{sen^2}x \,=\,{\large \frac{\operatorname{tg^2}x}{1\,+\,\operatorname{tg^2}x}}\; \Rightarrow \operatorname{sen^2}x \,=\,{\large \frac{\frac{25}{144}}{1\,+\,\frac{25}{144}}} \,=\,\frac{25}{169}$ Então $\,\boxed{\operatorname{sen}x\,=\,\frac{5}{13}}\;\text{ (para x agudo) }$ ×
Calcular $\,y\,=\,{\Large \frac{\operatorname{cos}x\,-\,\operatorname{sec}x}{\operatorname{sen}x\,-\,\operatorname{cossec}x}}\;$, sabendo que $\,\operatorname{tg}x\,=\,3\;$.
Determine o vértice e o conjunto imagem da função $\;f\;\text{ de }\,\mathbb{R}\,\text{ em } \,\mathbb{R}\;$ definida por $\;f(x)\,=\,2x^2 \,-\,12x\,+\,10\;$.
resposta: Vértice: $\,V\,=\,(3;\,-8)\;$ Conjunto Imagem: $\;Im(f)\,=\,[-8;\,+\infty[ \;$ ou $\;Im(f)\,=\,\lbrace \,y\in \mathbb{R} \mid \; y \geqslant -8 \,\rbrace$ ×
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.
(PUC) Seja $\;x\;$ elemento de $\;\mathbb{A}\;$. Se $\;x\,\notin \;]{\small -1};\,2]\,\text{, }\; x < 0\;$ ou $\; x \geqslant 3\,$, determine $\;\mathbb{A}\,$.
Na figura, as curvas tracejada e cheia são os gráficos das funções $\,f\,$ e $\,g\,$, respectivamente. São feitas as afirmações a seguir de (I) a (V): Os únicos valores de $\,x \, \in \; [{\small -3};\,5]\;$ tais que:
I)
$\,f(x)\,=\,0\;$ são $\; x\,=\,-2\;$ ou $\;x\,=\,3\,$
Na figura, as curvas tracejada e cheia são os gráficos das funções $\,f\,$ e $\,g\,$, respectivamente. São feitas as afirmações a seguir de (I) a (V): Os únicos valores de $\,x \, \in \; [{\small -3};\,5]\;$ tais que:
I)
$\,g(x)\,=\,0\;$ são $\; x\,=\,-2\;$ ou $\;x\,=\,1\;$ ou $\;x\,=\,4$
(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
(FAAP) Na figura, enquanto $\,x\,$ varia de 0 a $\,\beta\,$, os pontos $\;P_1\;$ e $\;P_2\;$ percorrem arcos nas parábolas $\,y\,=\,x^2\,-\,4x \;\;$ e $\;\;-x^2\,+\,16x\;$.
Pede-se:
a)
o valor de $\,\beta\,$
b)
a maior distância entre $\,P_1\,$ e $\,P_2\,$.
resposta: a)$\,\beta\,=\,10\,$b) maior distância : $\,d_{P1-P2} \,=\,50\,$ ×
(VUNESP) Em uma partida de futebol a trajetória da bola, ao ser batida uma falta do jogo, é tal que a sua altura $\,h\,$, em metros, varia com o tempo $\,t\,$, em segundos, de acordo com a equação: $\phantom{X}h\,=\,-t^2\,+\,10t \phantom{XXX}(0\,\leqslant \,t \,\leqslant 10)$ Então a alternativa correta é:
a)
a altura máxima atingida pela bola é de 25 m.
b)
a distância do local da falta até o local onde a bola atinge o solo é de 20 m.
c)
o valor de $\,t\,$ para o qual a bola atinge a sua altaura máxima é maior do que 5 segundos.
d)
a bola, nesse intervalo de tempo, atinge 3 vezes o solo.
(SANTA CASA - 1982) As dimensões de um retângulo são numericamente iguais às coordenadas do vértice da parábola de equação $\;y\,=\,-128x^2\,+\,32x\,+\,6\;$. A área do retângulo é:
(MACKENZIE - 1982) Seja $\;ax^2\,+\,bx\,+\,c\,=\,0\;$ uma equação de coeficientes reais não nulos, com $\,a\,$ e $\,c\,$ de sinais contrários. Então, podemos afirmar que, certamente:
(FAC OBJETIVO - 1982) Seja $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ uma função definida por $\;f(x)\,=\,{\large \sqrt{x^2\,+\,x\,+\,k}}\;$, sendo $\,k\,$ um número real. Um valor possível para $\,k\,$ é:
(SANTA CASA - 1982) A função quadrática $\,f\,$, definida por $\;f(x)\,=\,(m\,-\,1)x^2\,+\,2mx\,+\,3m\;$, assume somente valores estritamente positivos, para todo $\;x \in \mathbb{R}\;$ se, e somente se,
(MED JUNDIAÍ - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$, definida por $\;f(x)\,=\,-x^2\,+\,ax\,+\,b\;$. Se os pontos (1 ; 3) e (0 ; 1) pertencem ao gráfico de $\,f\;$, um outro ponto do gráfico é:
(FGV - 1982) Para que a equação $\phantom{X}(a\,-\,2) \centerdot x^2 \,+\,ax\,+\,a\,-\,1\,=\,0\phantom{X}$ apresente duas raízes reais e distintas, a condição é:
a)
$\,a < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\,$
b)
$\,a > 2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$
c)
$\,a\,\neq\,2\,$
d)
$\,2(1\,-\,{\large \frac{\sqrt{3}}{3}}) < \,a\, < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\;$ e $\;a\,\neq \,2$
e)
$\,a\, < \,2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$ ou $\,a\, >\,2(1\,+\,{\large \frac{\sqrt{3}}{3}})$
(UFGO - 1982) Se possível, determine em $\,\mathbb{R}\,$ o conjunto solução da inequação $\,(x^2\,-\,2x\,-\,15)\centerdot (-x^2\,-\,2)\centerdot (1\,-\,x^2)\, \leqslant\,0$
(MACKENZIE) Em $\,\phantom{X} y\,=\,ax^2\,+\,bx\,+\,c\;,\;(a\,\neq \, 0) \phantom{X}\,$, com $\,a\,$, $\,b\;$ e $\;c\,$ reais, tem-se $\,y\,$ máximo para $\,x\,=\,2\,$. Então:
( I )
$\,{\large \frac{b}{a}}\,=\,-4\;$ e $\;a > 0\,$
( II )
$\,| {\large \frac{b}{a}} | \,=\,4\;$ e $\;a\,$ qualquer
(FAAP) Seja $\phantom{X} f\,:\,[-3\,;\,0] \rightarrow \mathbb{R}\phantom{X}$ a função tal que $\phantom{X} f(x)\,=\,(x\,+\,1)(x\,+\,3) \phantom{X}$. O conjunto imagem de $\;f\;$ é:
O conjunto dos valores de $\phantom{X} x \phantom{X}$ em $\phantom{X}\mathbb{R^*} \phantom{X}$ tais que $\phantom{X} (f\circ g)(x)\,=\,(h\circ f)(x) \phantom{X}$, é subconjunto de:
Dados os conjuntos A = {1, 2, 3, 4} e B = {1, 2, 3, 5, 6, 7}, calcular o número de funções injetoras de A em B.
resposta: Resolução: O número de funções injetoras de A em B é exatamente o $\,A_{\large 6,4}\,$, pois cada conjunto imagem é um "conjunto ordenado" de 4 elementos escolhidos entre os 6 elementos do conjunto B. Assim, o número total de funções injetoras de A em B é $\,A_{\large 6,4}\,=\,6\centerdot 5\centerdot 4\centerdot 3\,$, e portanto, 360. Resposta: O número de funções injetoras de A em B é 360. ×
Sendo A = {1, 2, 3, 4}  e   B = {7, 8, 9, 10}, calcular o número de funções bijetoras de A em B.
resposta: Resolução:
O número total de funções bijetoras de A em B é $P_{\large4}\;=\;4\centerdot 3\centerdot 2\centerdot 1\,$. Portanto, 24
.Resposta: O número de funções bijetoras de A em B é 24.
(ITA - 1990) Seja $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ a função definida por $f(x)\,=\,\left\{ \begin{array}{rcr} x\,+\,2 \;\; \mbox{, se } \; x \leqslant -1\;\;\;\; \\ {\large x^2} \;\; \mbox{, se } \; -1 < x \leqslant 1\;\, \\ 4\;\; \mbox{, se } \; x > 1\phantom{XXXXX} \\ \end{array}\right. \;\;$ Lembrando que se $\, \mathbb{A}\, \subset \, \mathbb{R} \,$ então $\,{\large f^{-1}}(\mathbb{A})\,=\, \{ x\,\in\, \mathbb{R}\;:\;f(x)\,\in \,\mathbb{A} \}\,$ considere as afirmações:
(I) $\,f\,$ não é injetora e $\,{\large f^{-1}}([3,5])\,=\,\lbrace 4 \rbrace \,\,$. (II) $\,f\,$ não é sobrejetora e $\,{\large f^{-1}}([3,5])\,=\,{\large f^{-1}}([2,6])\,$. (III) $\,f\,$ é injetora e $\,{\large f^{-1}}([0,4])\,=\,[-2, +\infty]\,$.
(ITA - 1990) Seja a função $\;f\,:\, \mathbb{R}\;-\;\lbrace2\rbrace\; \rightarrow \mathbb{R}\;-\;\lbrace3\rbrace \;$ definida por $\,f(x)\,=\,{\Large \frac{2x\,-\,3}{x\,-\,2}}\,+\,1\,$. Sobre sua inversa podemos garantir que:
a)
não está definida pois $\,f\,$ não é injetora.
d)
está definida por $\,{\large f^{-1}}(y)\,=\,{\Large \frac{y\,+\,5}{y\,-\,3}}\,-\,1\,\mbox{,}\,y\,\neq\,3\,$.
b)
não está definida, pois $\,f\,$ não é sobrejetora.
e)
está definida por $\,{\large f^{-1}}(y)\,=\,{\Large \frac{2y\,-\,5}{y\,-\,3}}\,-\,1\,\mbox{,}\,y\,\neq\,3\,$.
c)
está definida por $\,{\large f^{-1}}(y)\,=\,{\Large \frac{y\,-\,2}{y\,-\,3}}\,-\,1\,\mbox{,}\,y\,\neq\,3\,$.